
Распределительные сети низкого напряжения

Compact NSX Modbus

Опция связи Modbus

Руководство по эксплуатации **06/2008**

Содержание

	правила техники оезопасности	5
	О данном руководстве	7
Раздел 1	Опция связи Modbus для Compact NSX	9
	Введение	10
	Модуль интерфейса Modbus	11
	Схемы	14
	Конфигурация модуля интерфейса Modbus	18
Раздел 2	Протокол Modbus	. 21
т модол =	Принцип ведущий-ведомый Modbus	
	Функции Modbus	
	Исключительные коды Modbus	
	Защита записи	
	Управление паролями	
	Командный интерфейс	
	Примеры команд	
	Управление датой	40
	Механизм хронологического протокола	
	Таблицы регистров Modbus	45
Раздел 3	Данные расцепителя Micrologic	. 47
3.1	Регистры расцепителя Micrologic	48
	Измерения в реальном времени	49
	Минимальные/максимальные значения величин, измеряемых в реальном времени	54
	Измерения энергии	55
	Измерения потребления	56
	Время сброса минимальных/максимальных значений	58
	Идентификация	59
	Состояние	61
	Хронологический протокол аварийно-предупредительных сигналов	
	Хронологический протокол аварийных отключений.	
	Хронологический протокол операций техобслуживания	
	Предварительные аварийно-предупредительные сигналы	
	Аварийно-предупредительные сигналы, задаваемые пользователем	
	Параметры защиты	
	Конфигурация модуля SDx	
	Параметры измерения	
	Информация с указанием даты и времени	
	Индикаторы техобслуживания	
<u></u>	Прочие параметры	
3.2	Команды расцепителя Micrologic	
	Команды защиты	
	Команды квитирования событий	
	Команды конфигурирования измерений	. 101

Раздел 4	Данные модуля BSCM	107
4.1	Регистры модуля BSCM	
	Идентификация	
	Состояние	
	Индикаторы техобслуживания	
	Хронологический протокол событий	
4.2	Команды модуля BSCM	
	Команды и коды ошибки	115
	Команды управления автоматическим выключателем	116
	Команды счётчиков	118
Раздел 5	Данные модуля интерфейса Modbus	121
5.1	Регистры модуля интерфейса Modbus	
	Идентификация	
	Параметры сети Modbus	
5.2	Команды модуля интерфейса Modbus	126
	Перечень команд модуля интерфейса Modbus	
	Команды модуля интерфейса Modbus	128
5.3	Профиль связи	
	Профиль связи	132
	Регистры профиля связи	133
Приложение		143
•		
Приложение А	Перекрёстные ссылки регистров Modbus	
	Перекрёстные ссылки регистров Modbus	145

Правила техники безопасности

Важная информация

Уведомление

Внимательно прочитайте данные правила и ознакомьтесь с аппаратом прежде, чем осуществлять его установку, эксплуатацию или техническое обслуживание. Приведённые ниже специальные сообщения, которые могут находиться в документации или на аппарате, имеют целью предупредить Вас о потенциальных опасностях или привлечь Ваше внимание к информации, призванной разъяснить или упростить ту или иную процедуру.

Этот символ в комбинации с предупреждающей табличкой ОПАСНО или ПРЕДУПРЕЖДЕНИЕ сигнализирует об опасности поражения электрическим током, из-за которой несоблюдение правил техники безопасности может привести к телесным повреждениям.

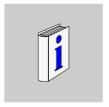
Этот символ, обозначающий опасность, предупреждает Вас о риске получения телесных повреждений. Во избежание травм или летального исхода неукоснительно соблюдайте правила безопасности, указанные рядом с этим символом.

М ОПАСНО

ОПАСНО означает реально опасную ситуацию, которая, если её не предотвратить, **приведёт** к серьёзным телесным повреждениям или летальному исходу.

▲ ПРЕДУПРЕЖДЕНИЕ

ПРЕДУПРЕЖДЕНИЕ означает потенциально опасную ситуацию, которая, если её не предотвратить, **может привести** к серьёзным телесным повреждениям, летальному исходу или материальному ущербу.


№ ВНИМАНИЕ

ВНИМАНИЕ означает потенциально опасную ситуацию, которая, если её не предотвратить, может привести к телесным повреждениям или материальному ущербу.

Важное замечание

Установка, эксплуатация и техническое обслуживание электротехнического оборудования должны выполняться квалифицированными специалистами. Компания Schneider Electric не несёт никакой ответственности за возможные последствия, могущие иметь место в результате использования данной документации неквалифицированным персоналом. © 2008 Schneider Electric. Все права защищены.

О данном руководстве

Общие сведения

Предназначение документа

Целью данного Руководства является предоставление пользователям, монтажникам и обслуживающему персоналу технической информации, необходимой для использования протокола Modbus с автоматическими выключателями Compact NSX 100 - 630 A.

Пределы ответственности

Компания Schneider Electric не несёт ответственности за ошибки, которые могут встретиться в этом документе. Если у Вас есть предложения по улучшению или изменению Руководства или Вы обнаружили в нём ошибки, обращайтесь в Schneider Flectric

Данный документ не может быть воспроизведен полностью или частично в какой бы то ни было форме и каким бы то ни было способом (электронным, механическим или путём фотокопирования) без получения предварительного разрешения от компании Schneider Electric.

Содержащиеся в этом документе сведения и иллюстрации ни коим образом не влекут за собой никаких контрактных обязательств. Мы оставляем за собой право модернизировать нашу продукцию в соответствии с нашей политикой постоянного совершенствования. Представленные в Руководстве данные могут быть изменены без предварительного уведомления и не должны пониматься как обязательство со стороны Schneider Electric.

Смежные документы

Наименование № по каталогу	№ по каталогу
Автоматические выключатели Compact NSX. Руководство по эксплуатации	LV434100
Расцепители Micrologic 5 и 6. Руководство по эксплуатации	LV434103
Система ULP. Руководство по эксплуатации	TRV99100
Compact NSX 100 - 630 A. Каталог	LVPED208001FR

Вышеуказанные документы и другую техническую информацию Вы можете загрузить с нашего Web-сайта по адресу: www.schneider-electric.com.

Предупреждения, относящиеся к продукции

Во время установки и эксплуатации этого изделия должны соблюдаться все местные правила техники безопасности, имеющие отношение к данной области. Исходя из условий безопасности и с целью гарантировать соответствие описанным в документации данным, ремонт компонентов изделия может выполняться только изготовителем.

Отзывы пользователя

Направляйте Ваши отзывы электронной почтой по адресу: techpub@schneider-electric.com

Опция связи Modbus для Compact NSX

1

Общие сведения

Введение

В данном разделе описан модуль интерфейса Modbus. Этот модуль позволяет присоединить автоматический выключатель Compact NSX к сети Modbus.

Содержание данного раздела

Данный раздел содержит следующие темы:

Тема	Страница
Введение	10
Модуль интерфейса Modbus	11
Схемы	14
Конфигурация модуля интерфейса Modbus	18

Введение

Общее описание

Опция связи Modbus позволяет присоединить автоматический выключатель Compact NSX к системе диспетчеризации или к другому аппарату, имеющему канал связи ведущего Modbus.

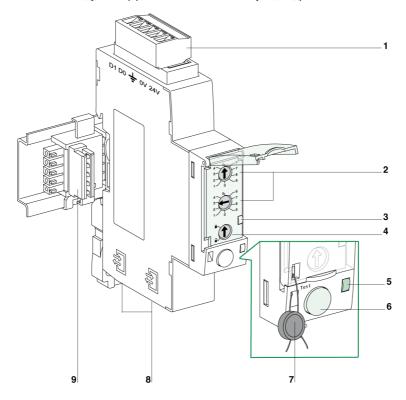
Опция связи Modbus совместима со следующим конфигурациями Compact NSX:

- Автоматический выключатель Compact NSX с модулем состояний и управления автоматического выключателя BSCM (Breaker Status and Control Module) и коммуникационным мотором-редуктором.
- Автоматический выключатель Compact NSX с расцепителем Micrologic 5/6.

Автоматический выключатель Compact NSX присоединяется к сети передачи данных Modbus через модуль интерфейса Modbus.

Доступ к функциям

Опция связи Modbus обеспечивает доступ к целому ряду функций, в том числе:


- чтению данных диагностики и измерений;
- чтению состояний и дистанционных действий;
- передаче информации о событиях с указанием даты и времени;
- отображению настроек защиты;
- чтению данных об идентификации и конфигурации выключателя Compact NSX;
- установке времени и синхронизации.

Перечень функций зависит от вида применения, типа расцепителя Micrologic, а также от модуля BSCM.

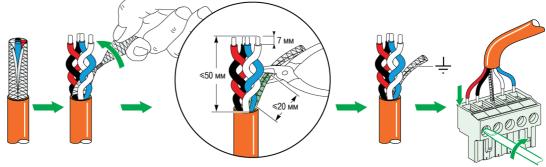
Модуль интерфейса Modbus

Общее описание

Модуль интерфейса Modbus позволяет подключить к сети Modbus модуль соединительной системы ULP (Universal Logic Plug), например, автоматический выключатель Compact NSX. Каждый автоматический выключатель имеет свой собственный модуль интерфейса Modbus и соответствующий адрес Modbus.

- 1 5-контактный разъём для Modbus и питание 24 В пост. тока
- 2 Переключатели адреса Modbus
- 3 Светодиодный индикатор трафика Modbus
- 4 Переключатель блокировки Modbus
- 5 Светодиодный индикатор тестирования
- 6 Кнопка тестирования
- 7 Механическая блокировка (пломба)
- 8 2 разъёма RJ45
- 9 Аксессуар для присоединения

Монтаж


Модуль интерфейса Modbus монтируется на DIN-рейке. Аксессуар для присоединения позволяет пользователю соединить между собой несколько модулей интерфейса Modbus без дополнительных проводов.

Присоединение к сети Modbus

5-контактный разъём позволяет присоединить модуль интерфейса Modbus к сети Modbus (2 кабеля) и источнику питания 24 В пост. тока.

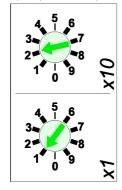
Для удобства подключения каждый контакт имеет соответствующую маркировку.

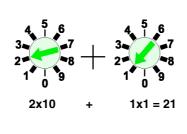
Разъём	Марки- ровка	Цвет	Описание	Длина неэкранированного участка кабеля	Длина зачищенного участка кабеля
	D1	Синий	Коммуникационная пара	Не более 5 см	7 мм
	D0	Белый	D1 : Сигнал RS 485 B/B' или Rx+/Tx+ D0 : Сигнал RS 485 A/A' или Rx-/Tx-		
	÷	_	Экран	До 2 см (1)	7 мм
01 00	0 B	Чёрный	0 В источника питания	Не более 5 см	7 мм
01 00 to 07 34V	24 B	Красный	Питание 24 В пост. тока		
			7 MM	משמ	

(1) Во избежание появления электромагнитных помех, длина неэкранированного участка кабеля Modbus должна быть по возможности минимальной.

Примечание: нельзя присоединять более 2 кабелей к одному контактному штырю разъёма модуля интерфейса Modbus.

Переключатели адреса Modbus


Модулю интерфейса Modbus присваивается Modbus-адрес блока IMU (Intelligent Modular Unit — интеллектуальный модульный блок), к которому он подключен. Для получения более подробной информации об интеллектуальном модульном блоке см. Руководство по эксплуатации системы ULP.


Пользователь задаёт Modbus-адрес с помощью двух переключателей адреса, расположенных на передней панели модуля интерфейса Modbus.

Значение адреса находится в диапазоне от 1 до 99. Нельзя использовать значение 0, так как оно зарезервировано за широковещательной рассылкой команд.

Модуль интерфейса Modbus изначально сконфигурирован с адресом 99.

Пример задания адреса 21 с помощью переключателей адреса:

Светодиодный индикатор трафика Modbus

Жёлтый светодиодный индикатор трафика Modbus информирует пользователя о трафике, переданном или полученном автоматическим выключателем Compact NSX по сети Modbus.

- Если переключатели адреса установлены на 0, светодиод горит постоянным светом.
- Если переключателями адреса задано значение в диапазоне между 1 и 99, светодиод горит при передаче и получении сообщений, а в остальное время не горит.

Переключатель блокировки Modbus

Переключатель блокировки на передней панели модуля интерфейса Modbus позволяет активировать или дезактивировать команды дистанционного управления, передаваемые по сети Modbus на сам модуль интерфейса или же на другие модули (BSCM или расцепитель Micrologic).

Команды дистанционного управления активированы

Команды дистанционного управления дезактивированы

- Если стрелка указывает на открытый замок, команды дистанционного управления активированы.
- Если стрелка указывает на запертый замок, команды дистанционного управления дезактивированы.
 Единственные команды дистанционного управления, активные даже когда стрелка направлена на запертый замок,
 команды настройки абсолютного времени и индикации текущего времени. См. «Set Absolute Time» (Настройка абсолютного времени), стр. 128.

В остальных случаях, изменить параметры (например, настроить защиту) можно только на передней панели расцепителя Micrologic либо посредством утилиты RSU с помощью модуля техобслуживания, подключенного к гнезду для тестирования расцепителя Micrologic.

Кнопка тестирования

Кнопка тестирования позволяет проверить соединения между всеми модулями, подключенными к модулю интерфейса Modbus: расцепителем Micrologic, щитовым индикатором FDM121 и модулем техобслуживания.

Нажатие кнопки тестирования запускает 15-секундную проверку соединений.

Во время тестирования все модули продолжают работать в обычном режиме.

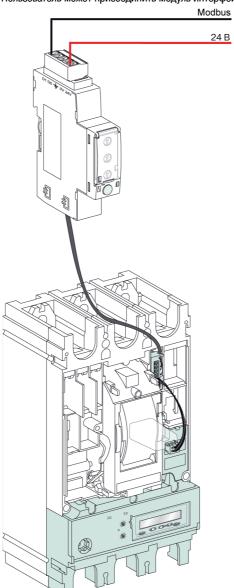
Светодиодный индикатор тестирования

Жёлтый светодиодный индикатор тестирования отражает состояние соединений между модулями, подключенными к модулю интерфейса Modbus.

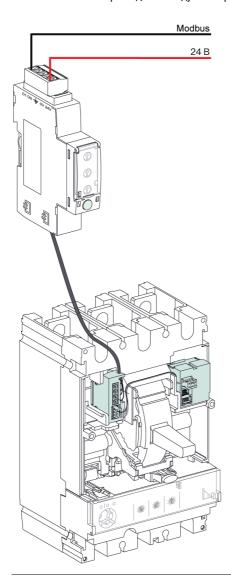
Состояние индикатора тестирования	Значение
Горит: 50 мс / Не горит: 950 мс	Обычный режим (тестирование не проводится)
Горит: 250 мс / Не горит: 250 мс	Конфликт адреса модуля ULP: два идентичных модуля ULP обнаружены в одном интеллектуальном модульном блоке
Горит: 500 мс / Не горит: 500 мс	Режим сниженной производительности (память EEPROM (ЭСППЗУ) не работает)
Горит: 1000 мс / Не горит: 1000 мс	Режим тестирования
Постоянно горит	Соединение ULP в нерабочем состоянии
Постоянно не горит	Отсутствует электропитание

Схемы

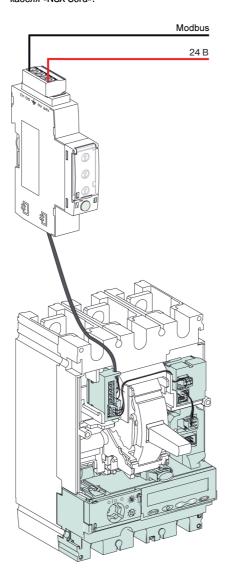
Общее описание


В зависимости от конфигурации автоматического выключателя Compact NSX, пользователь должен соединить модуль интерфейса Modbus с выключателем Compact NSX, используя одну из следующих конфигураций:

- присоединение модуля интерфейса Modbus к расцепителю Micrologic;
- присоединение модуля интерфейса Modbus к модулю состояний и управления автоматического выключателя BSCM;
- присоединение модуля интерфейса Modbus к модулю BSCM и расцепителю Micrologic.


Все конфигурации соединения требуют использования кабеля «NSX Cord» или изолированного кабеля «NSX Cord» при напряжении выше 480 В переменного тока.

Для получения более подробной информации о совместимых с выключателем Compact NSX изделиях (расцепитель Micrologic, модуль BSCM, кабель «NSX Cord») и их монтаже *см. Руководство по эксплуатации автоматических выключателей Compact NSX*.


Присоединение модуля интерфейса Modbus к расцепителю Micrologic Пользователь может присоединить модуль интерфейса Modbus к расцепителю Micrologic при помощи кабеля «NSX Cord».

Присоединение модуля интерфейса Modbus к модулю BSCM Пользователь может присоединить модуль интерфейса Modbus к модулю BSCM при помощи кабеля «NSX Cord».

Присоединение модуля интерфейса Modbus к модулю BSCM и расцепителю Micrologic Пользователь может присоединить модуль интерфейса Modbus к модулю BSCM и расцепителю Micrologic при помощи кабеля «NSX Cord».

Modbus 24 B Изолированный кабель «NSX Cord»

Конфигурирование модуля интерфейса Modbus

Общее описание

Существуют два способа конфигурирования модуля интерфейса Modbus:

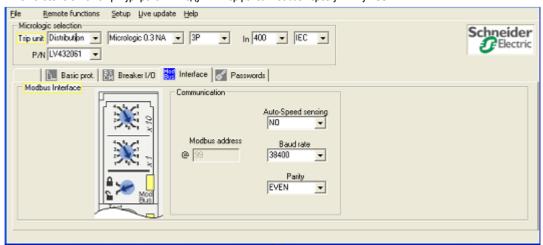
- автоматическое конфигурирование (автоматическое определение скорости включено): при подключении к сети
 Modbus, модуль интерфейса Modbus автоматически определяет сетевые параметры (конфигурирование по умолчанию);
- пользовательское конфигурирование (автоматическое определение скорости выключено): пользователь может выполнить индивидуальные настройки сетевых параметров с помощью утилиты RSU (Remote Setting Utility).

Автоматическое конфигурирование

Пользователь задаёт адрес ведомого устройства Modbus с помощью двух переключателей Modbus-адреса на передней панели модуля интерфейса. При подключении к сети Modbus, модуль интерфейса Modbus автоматически определяет скорость передачи данных и чётность сети. Алгоритм автоматического определения скорости проверяет текущую скорость передачи данных и чётность и автоматически определяет сетевые параметры. Для функционирования алгоритма автоматического определения скорости необходимо, чтобы ведущий Modbus послал по сети Modbus не менее 15 фреймов.

Используется бинарный формат передачи: 1 стартовый бит, 8 информационных битов, 1 стоповый бит в случае проверки на чётность или нечётность и 2 стоповых бита в случае отсутствия контроля чётности.

Примечание: В случае возникновения проблем с алгоритмом автоматического определения скорости рекомендуется выполнить следующую процедуру:


- 1. Задайте Modbus-адрес 1 модулю интерфейса Modbus (см. «Переключатели адреса», стр. 12).
- **2.** Пошлите запрос **Чтение множественных регистров (FC03)** ведомому устройству 1, на любой адрес и для любого количества регистров.
- 3. Пошлите этот запрос не менее 15 раз.

Пользовательское конфигурирование

Пользователь задаёт адрес ведомого устройства Modbus с помощью двух переключателей адреса на передней панели модуля интерфейса Modbus.

Пользователь выполняет индивидуальные настройки сетевых параметров посредством утилиты RSU.

Ниже показано окно конфигурирования модуля интерфейса Modbus через утилиту RSU:

Если опция автоматического определения скорости дезактивирована, пользователь выбирает контроль чётности и скорость передачи данных сети:

- Поддерживаемая скорость передачи: 4800, 9600, 19200 и 38400 бод.
- Поддерживаемый контроль чётности: проверка на чётность, проверка на нечётность, отсутствие контроля чётности.

Примечание: С помощью утилиты RSU нельзя изменить Modbus-адрес или состояние переключателя блокировки.

Утилиту RSU можно загрузить с сайта www.schneider-electric.com.

Для получения более подробной информации об использовании утилиты RSU с модулем интерфейса Modbus, *обращайтесь к помощи «он лайн».*

Протокол Modbus

2

Общие сведения

Введение

В данном разделе описан протокол ведущий-ведомый Modbus и принцип командного интерфейса.

Содержание данного раздела

Данный раздел содержит следующие темы:

Тема	Страница
Принцип ведущий-ведомый Modbus	22
Функции Modbus	25
Исключительные коды Modbus	29
Защита записи	31
Управление паролями	32
Командный интерфейс	33
Примеры команд	37
Управление датой	40
Механизм хронологических протоколов	43
Таблицы регистров Modbus	45

21

Принцип ведущий-ведомый Modbus

Введение

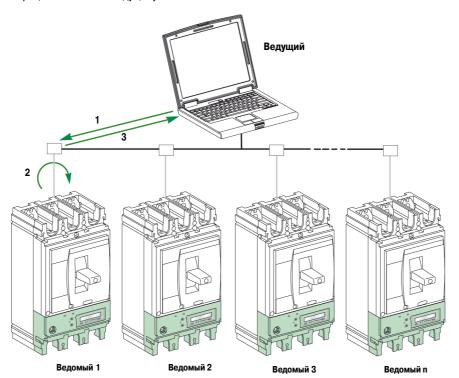
Протокол Modbus осуществляет обмен информацией, используя механизм запрос-ответ между ведущим (клиентом) и ведомым (сервером). Принцип ведущий-ведомый является моделью протокола связи, в котором ведущее устройство управляет одним или несколькими ведомыми устройствами. В стандартной сети Modbus — один ведущий и до 31 ведомого.

Подробное описание протокола Modbus имеется на сайте www.modbus.org.

Характеристики принципа ведущий-ведомый

Характеристики принципа ведущий-ведомый:

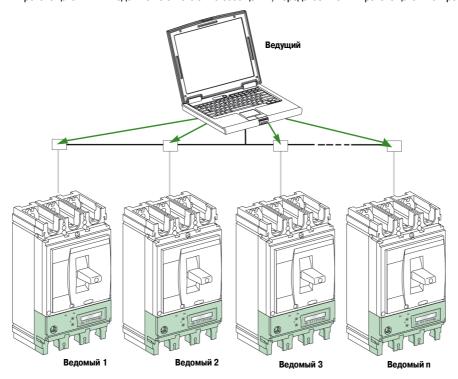
- Одновременно к сети подключен только один ведущий.
- Только ведущий может запускать передачу данных и посылать запросы ведомым.
- Ведущий может индивидуально обращаться к каждому ведомому, используя его индивидуальный адрес, или одновременно ко всем ведомым при помощи адреса 0.
- Ведомые могут только посылать ответы ведущему.
- Ведомые не могут запускать передачу данных, ни ведущему ни другим ведомым.


Режимы связи ведущий-ведомый

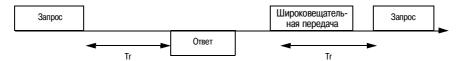
Протокол Modbus может осуществлять обмен информацией в двух режимах связи:

- в режиме запрос-ответ;
- в широковещательном режиме.

Режим запросответ


В режиме запрос-ответ ведущий обращается к ведомому, используя его индивидуальный адрес. Ведомый обрабатывает запрос, затем отвечает ведущему.

- **1** Запрос
- 2 Процесс
- 3 Ответ


Широковещательный режим

Ведущий может также обращаться ко всем ведомым посредством адреса 0. Этот тип обмена информацией называется широковещательным. Ведомые не отвечают на сообщения, передаваемые в широковещательном режиме.

Время ответа

Время ответа Tr — время, необходимое ведомому, чтобы ответить на запрос ведущего:

Значения при использовании протокола Modbus:

- Типичное значение < 10 мс для 90 % обменов.
- Максимальное значение ≈ 700 мс, соответственно рекомендуется применять выдержку времени 1 с после получения запроса Modbus.

Обмен данными

Протокол Modbus использует два типа данных:

- биты;
- 16-битовые слова, называемые регистрами.

Каждый регистр имеет номер регистра. Каждый тип данных (бит или регистр) имеет 16-битовый адрес.

Сообщения, передаваемые по протоколу Modbus, содержат адрес обрабатываемых данных.

Регистры и адреса

Адрес регистра номер n — n-1. Например, адрес регистра номер 12000 — 11999. Во избежание путаницы, в таблицах, приведённых в последующих разделах настоящего Руководства, даны номера регистров и соответствующие адреса.

Фреймы

Все фреймы обмена информации по протоколу Modbus имеют максимальный размер 256 байт и состоят из четырёх полей:

Поле	Определение	Размер	Описание	
1	Номер ведомого	1 байт	Место назначения запроса	
			• 0: широковещательная передача (для всех ведомых)	
			• 1247: одно место назначения	
2	Код функции	1 байт	См. следующий пункт	
3	Код данных или подфункции	п байт	Данные запроса или ответа	
			• Код подфункции	
4	Контроль	2 байта	CRC16 (для выявления ошибок передачи)	

Функции Modbus

Общее описание

Протокол Modbus предлагает ряд функций, позволяющих считывать или записывать данные по сети Modbus. Кроме того, в Modbus есть функции диагностики и управления сетью.

Здесь описаны только те функции Modbus, которые поддерживаются автоматическим выключателем Compact NSX.

Функции чтения

Имеются следующие функции чтения:

Код функции (десятичный)	Код подфункции (десятичный)	Наименование	Описание
3	-	Read holding registers	Чтение n выходных или внутренних слов
4	-	Read input registers	Чтение n входных слов
43	14	Read device identification	Чтение идентификационных данных ведомого

Пример чтения регистра

В следующей таблице показано, как считывать действующее значение тока фазы 1 (I1) в регистре 1016. Адрес регистра 1016: 1016 - 1 = 1015 = 0x03F7. Modbus-адрес ведомого Modbus: 47 = 0x2F.

Запрос ведущего		Ответ ведомого	
Наименование поля Пример		Наименование поля	Пример
Адрес ведомого Modbus	0x2F	Адрес ведомого Modbus	0x2F
Код функции	0x03	Код функции	0x03
Адрес слова для чтения (MSB)	0x03	Длина данных в байтах	0x02
Адрес слова для чтения (LSB)	0xF7	Значение регистра (MSB)	0x02
Число регистровs (MSB)	0 x 00	Значение регистра (LSB)	0x2B
Число регистров (LSB) 0x01		_	•
CRC MSB	0xXX	CRC MSB	0xXX
CRC LSB	0xXX	CRC LSB	0xXX

Содержимое регистра 1016 (адрес 1015): 0x022B = 555. Соответственно, действующее значение тока фазы 1 (I1) составляет 555 A.

Пример чтения идентификации устройства

Функция чтения идентификации устройства (Read Device Identification) служит для стандартного доступа к необходимой информации для идентификации устройства. Описание состоит из последовательности объектов (строка символов ASCII).

Полное описание функции чтения идентификации устройства имеется на сайте www.modbus.org.

Для идентификации модуля интерфейса Modbus используется следующая кодировка:

Наименование	Тип	Описание	
Название поставщика	STRING	'Schneider Electric' (18 символов)	
Код изделия	STRING	'TRV00210'	
Версия микропрограммного обеспечения	STRING	°VX.Y.Z' (не менее 6 символов)	
URL-адрес поставщика	STRING	'www.schneider-electric.com' (26 символов)	
Наименование изделия	STRING	Модуль коммуникационного интерфейса Modbus/ULP	

Функция чтения распределённых регистров хранения

Имеется функция чтения распределённых регистров хранения:

Код функции (десятичный)	Код подфункции (десятичный)	Наименование	Описание
100	4	Read scattered holding register	Чтение п независимых слов

Максимальное значение n равно 100.

Функция чтения распределённых регистров хранения позволяет пользователю:

- избегать чтения больших блоков зависимых слов, если необходимы всего несколько слов;
- избегать многократного использования функций 3 и 4 для чтения независимых слов.

Пример

В нижеприведённой таблице показано, как считывать адреса 101 = 0x65 и 103 = 0x67 ведомого Modbus. Modbus-адрес ведомого Modbus составляет 47 = 0x2F.

Запрос ведущего		Ответ ведомого	
Наименование поля	Пример	Наименование поля	Пример
Адрес ведомого Modbus	0x2F	Адрес ведомого Modbus	0x2F
Код функции	0x64	Код функции	0x64
Длина данных в байтах	0x06	Длина данных в байтах	0x06
Код подфункции	0x04	Код подфункции	0x04
Номер передачи (1)	0xXX	Номер передачи (1)	0xXX
Адрес первого слова для чтения (MSB)	0 x 00	Первое считанное слово (MSB)	0x12
Адрес первого слова для чтения (LSB)	0x65	Первое считанное слово (LSB)	0x0A
Адрес второго слова для чтения (MSB)	0 x 00	Второе считанное слово (MSB)	0x74
Адрес второго слова для чтения (LSB)	0x67	Второе считанное слово (LSB)	0x0C
CRC MSB	0xXX	CRC MSB	0xXX
CRC LSB 0xXX		CRC LSB	0xXX

Функции записи

Имеются следующие функции записи:

Код функции (десятичный)	Код подфункции (десятичный)	Наименование	Описание
6	_	Preset single register	Запись одного слова
16	-	Preset multiple registers	Запись п слов

Функции диагностики

Имеются следующие функции диагностики:

Код функции (десятичный)	Код подфункции (десятичный)	Наименование	Описание
8	_	Diagnostic	Управление счётчиками диагностики
8	10	Clear counters and diagnostic register	Сброс всех счётчиков диагностики
8	11	Return bus message counter	Чтение счётчика сообщений, полученных без ошибки
8	12	Return bus communication error counter	Чтение счётчика сообщений, полученных с ошибкой
8	13	Return bus exception error counter	Чтение счётчика посланных исключительных ответов
8	14	Return slave message counter	Чтение счётчика сообщений, посланных ведомому
8	15	Return slave no response counter	Чтение счётчика сообщений, посланных ведомому, на которые ведомый не ответил
8	16	Return slave negative acknowledge counter	Чтение счётчика сообщений, посланных ведомому, на которые ведомый ответил с исключительным кодом 07 «Negative Acknowledge» («отрицательное квитирование»)
8	17	Return slave busy counter	Чтение счётчика сообщений, посланных ведомому, на которые ведомый ответил с исключительным кодом 06 «Slave Device Busy» («устройство занято»)
8	18	Return bus overrun counter	Чтение счётчика сообщений, посланных ведомому, которые не смогли пройти вследствие ошибки переполнения
11	_	Get communication event counter	Чтение счётчика событий Modbus

Счётчики диагностики

Modbus использует счётчики диагностики для активации управления ошибками и параметрами. Счётчики доступны посредством функций диагностики Modbus (коды функций 8 и 11). Описание счётчиков диагностики Modbus и счётчиков событий Modbus дано в следующей таблице:

Номер счётчика	Наименование счётчика	Описание
1	Bus message counter	Счётчик сообщений, принятых ведомым без ошибки
2	Bus communication error counter	Счётчик сообщений, принятых ведомым с ошибкой
3	Slave exception error counter	Счетчик исключительных ответов и широковещательных сообщений с ошибкой
4	Slave message counter	Счётчик сообщений, посланных ведомому
5	Slave no response counter	Счётчик сообщений, посланных ведомому, на которые ведомый не ответил
6	Slave negative acknowledge counter	Счётчик сообщений, посланных ведомому, на которые ведомый ответил с исключительным кодом 07 «Negative Acknowledge» («отрицательное квитирование»)
7	Slave busy counter	Счётчик сообщений, посланных ведомому, на которые ведомый ответил с исключительным кодом 06 «Slave Device Busy» («устройство занято»)
8	Bus character overrun counter	Счётчик сообщений, посланных ведомому, которые не смогли пройти вследствие ошибки переполнения
9	Communication event counter	Счётчик событий Modbus (чтение этого счётчика обеспечивается функцией с кодом 11)

Сброс счётчиков

Счётчики сбрасываются (обнуляются):

- когда они достигают максимального значения 65535;
- посредством команды сброса Modbus (код функции 8, код подфункции 10);
- при отключения электропитания;
- при изменении параметров передачи данных.

Исключительные коды Modbus

Исключительные ответы

Ведущий (клиент) или ведомый (сервер) могут выдавать исключительные ответы из-за ошибок в процессе обработки данных. Одно из следующих событий может произойти после запроса ведущего (клиента):

- Если ведомый (сервер) получает запрос от ведущего (клиента) без ошибки коммуникации и может стандартно обработать запрос, он возвращает стандартный ответ.
- Если ведомый (сервер) не получает запрос от ведущего (клиента) из-за ошибки коммуникации, он не отвечает.
 Программа клиента в конечном счёте обработает условие времени ожидания запроса.
- Если ведомый (сервер) получает запрос от ведущего (клиента), но при этом обнаруживает ошибку коммуникации, он не отвечает. Программа клиента в конечном счёте обработает условие времени ожидания запроса.
- Если ведомый (сервер) получает запрос от ведущего (клиента) без ошибки коммуникации, но не может его (например если запрос состоит в том, чтобы прочитать несуществующий регистр), сервер возвращает исключительный ответ, информируя ведущего о характере ошибки.

Исключительный фрейм

Для уведомления об исключительном ответе ведомый посылает ведущему исключительный фрейм, который состоит из четырёх полей:

Поле	Определение	Размер	Описание
1	Номер ведомого	1 байт	Место назначения запроса
			• 0: широковещательная передача (для всех ведомых)
			• 1247: одно место назначения
2	Исключительный код функции	1 байт	Код функции запроса + 128 (0х80)
3	Исключительный код	п байт	См. следующий пункт
4	Контроль	2 байта	CRC16 (для выявления ошибок передачи)

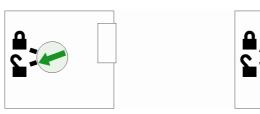
Исключительные коды

Фрейм исключительного ответа состоит из двух полей, которые отличают его от фрейма стандартного ответа:

- Исключительный код функции исключительного ответа равен коду функции исходного запроса плюс 128 (0х80).
- Исключительный код зависит от ошибки коммуникации, обнаруженной ведомым.

В таблице ниже приведены исключительные коды, поддерживаемые автоматическим выключателем Compact NSX:

Исключи- тельный код (десятичный)	Наименование	Описание
01	Illegal function (Недопустимая функция)	Полученный в запросе код функции не соответствует разрешённому для ведомого действию. Возможно, состояние ведомого не подходит для обработки конкретного запроса.
02	Illegal data address (Недопустимая адрес данных)	Полученный ведомым адрес данных не является разрешённым для ведомого.
03	Illegal data value (Недопустимое значение данных)	Значение поля данных запроса не является разрешённым для ведомого.
04	Slave device failure (Отказ ведомого)	Ведомому не удаётся выполнить требуемое действие из-за неустранимой ошибки.
05	Acknowledge (Квитирование)	Ведомый принимает запрос, но для его обработки требуется много времени.
06	Slave device busy (Ведомый занят)	Ведомый занят обработкой другой команды. Ведущий должен послать запрос, как только ведомый освободится.
07	Negative acknowledgment (Отрицательное квитирование)	Ведомый не может выполнить посланный ведущим запрос на программирование.
08	Memory parity error (Ошибка контроля чётности памяти)	Ведомый обнаруживает ошибку контроля чётности памяти при чтении расширенной памяти.
10	Gateway path unavailable (Нет пути доступа к шлюзу)	Шлюз перегружен или неправильно сконфигурирован
11	Gateway target device failed to respond (Нет ответа от целевого устройства шлюза)	Ведомый отсутствует в сети


Защита записи

Общее описание

Дистанционные изменения регистров Modbus могут представлять опасность для персонала, находящегося вблизи от автоматического выключателя, или привести к повреждению оборудования, если настройки защиты были изменены. Во избежание этого риска команды дистанционного управления защищены аппаратными и программными средствами.

Аппаратная защита

Переключатель блокировки Modbus, расположенный на передней панели модуля интерфейса Modbus, позволяет активировать или дезактивировать команды дистанционного управления, передаваемые по сети Modbus на сам модуль интерфейса Modbus, а также на другие модули (BSCM или расцепитель Micrologic).

Команды дистанционного управления активированы

Команды дистанционного управления дезактивированы

- Если стрелка указывает на открытый замок, команды дистанционного управления активированы.
- Если стрелка указывает на запертый замок, команды дистанционного управления дезактивированы.
 Единственные команды дистанционного управления, активные даже когда стрелка направлена на запертый замок, команды настройки абсолютного времени и индикации текущего времени. См. «Set Absolute Time» (Настройка абсолютного времени), стр. 128.

В остальных случаях, изменить параметры (например, настроить защиту) можно только на передней панели расцепителя Micrologic либо посредством утилиты RSU с помощью модуля техобслуживания, подключенного к гнезду для тестирования расцепителя Micrologic.

Программная защита

Для предотвращения непреднамеренного изменения конфигурации расцепителя, дистанционные изменения регистров Modbus имеют два способа защиты:

- защита за счёт устойчивой структуры данных и блока выделенных регистров Modbus;
- защита за счёт многоуровневой системы паролей.

Это сочетание называется командным интерфейсом. Если данные условия не соблюдаются, генерируется код ошибки и операция не выполняется. Аппаратная защита всегда имеет приоритет по отношению к программной защите.

Управление паролями

Общее описание

Определяются четыре пароля, каждый из которых соответствует определённому уровню.

Каждый уровень имеет своё предназначение:

- Уровни 1, 2, и 3 используются при выполнении действий общего характера.
- Уровень 4 является администраторским. Этот уровень необходим для записи параметров в расцепители Micrologic с помощью утилиты RSU.

Все команды управления для расцепителя Micrologic защищены паролем уровня 4, за исключением команд «Acknowledge a latched output» (Квитирование блокировки выхода), «Reset minimum/maximum» (Сброс минимальных/максимальных значений) и «Start/Stop synchronization» (Пуск/останов синхронизации), которые защищены паролем уровня 3 или 4.

Все команды управления для модуля BSCM защищены паролем уровня 4, за исключением команд «Open circuit breaker» (Отключение автоматического выключателя), «Close circuit breaker» (Включение автоматического выключателя) и «Reset circuit breaker» (Возврат автоматического выключателя в исходное положение), которые защищены паролем уровня 3 или 4.

Все команды управления для модуля интерфейса Modbus защищены паролем уровня 4, за исключением команд «Get current time» (Получение текущего времени) и «Set absolute time» (Настройка абсолютного времени), которые не требуют пароля.

Пароли по умолчанию

По умолчанию пароли имеют следующие значения:

Уровень пароля	Значение по умолчанию
Уровень 1	'1111' = 0x31313131
Уровень 2	'2222' = 0x32323232
Уровень 3	'3333' = 0x33333333
Уровень 4 (администраторский уровень)	'0000' = 0x30303030

Изменение пароля с помощью утилиты RSU

Пароли изменяются через утилиту RSU (Remote Setting Utility). Пользовательский профиль по умолчанию **Commissioning** (Пусконаладочные операции) позволяет пользователю изменять пароли.

Пароли состоят из четырёх символом ASCII. Они чувствительны к регистру. Разрешено использовать следующие символы:

- цифры от 0 до 9;
- буквы от «а» до «z»;
- буквы от «А» до «Z».

Сброс пароля с помощью утилиты RSU

Если пароль по умолчанию был изменён, в трёх случаях необходимо сбросить пароль до значения по умолчанию посредством утилиты RSU:

- Пользователь забыл пароль.
- Новый модуль добавлен в интеллектуальный модульный блок IMU (Intelligent Modular Unit): например, модуль BSCM или щитовой индикатор FDM121.
- В составе блока IMU заменён неисправный модуль.

Сброс паролей с помощью RSU возможен только в пользовательском профиле **Schneider service**. Для получения более подробной информации о сбросе паролей посредством утилиты RSU, обращайтесь к помощи «он лайн» по RSU.

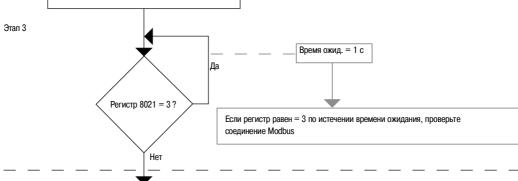
Командный интерфейс

Общее описание

Команды дистанционного управления активированы, если переключатель блокировки находится в открытом положении. Дистанционный изменения регистров Modbus выполняются с помощью командного интерфейса.

Каждая команда имеет свой код. Например, код команды 45192 определяют команду, служащую для настройки параметров защиты от перегрузок.

Примечание: в случае использования протокола Modbus с несколькими ведущими, проконсультируйтесь в Schneider Electric.


Выполнение команды

Ниже приведена последовательность выполнения команды:

Загрузите буферную память (слова № 0 - 19) Запишите этот буфер посредством операции записи блока (функция 16 Modbus) из 20 слов, начиная с регистра 8000.
2014 WILLIAM OTO TO
Запишите этот буфер посредством операции записи олока (функция то мосьов) из 20 слов, начиная с регистра 6000.
Считайте регистр состояния команды 8021 и подождите, пока его содержимое показывает, что команда ещё находится в процессе исполнения
(0x0003). Если состояние команды не изменится по истечении времени ожидания (1 с), проверьте соединение Modbus.
Считайте идентификатор ошибки в младших значащих битах (LSB) регистра 8021:
 Если LSB <> 0, это значит, что в выполнении команды произошёл сбой. Чтобы определить причину этого сбоя, проверьте идентификатор ошибки (см. следующий пункт). Например, если регистр 8021 выдаёт 5121 (0х1401), то идентификатор ошибки равен 1, что свидетельствует о неправильном уровне пароля (пользовательские права не достаточны). Если LSB = 0, команда выполнена без ошибок.

Диаграмма команды

На приведённой ниже диаграмме показана последовательность выполнения команды: Загрузите буферную память (слова № 0 - 19) Этап 1 Этап 2 Запишите буфер

Этап 4 Команды выполнена без ошибки Да В зависимости от команды: Проверьте количество байт в ответе (регистр 8022) Проверьте буфер данных (регистры 8023 - 8149) Регистр 8021 = 0 ? Нет

Сбой в выполнении команды

Проверьте регистр состояния команды 8021:

МSВ (старшие значащие биты) = адрес модуля – источника ошибки LSB (младшие значащие биты) = идентификатор ошибки

Считайте регистр состояния команды 8021

Структура командных данных

Структура командных данных определяется как набор значений, записанных в регистры от 8000 до 8149.

Имеются три основные области:

- Входные параметры: регистры 8000 8015
 При этом собственные параметры команд находятся в регистрах 8006 8015.
- Состояние команды: регистр 8021
- Возвращаемые значения: регистры 8022 8149

Регистр	Адрес	Описание	Комментарии
8000	7999	Код команды	Запись по этому адресу запускает команду с использованием параметров следующих регистров.
8001	8000	Длина параметров	Количество байтов, использованных в параметрах, включая данный (от 10 до 30). Это значение выдаётся для каждой команды.
8002	8001	Место назначения	Постоянное значение, выдаваемое для каждой команды. Значение по умолчанию: 0x0000.
8003	8002	Зарезервировано	Постоянное значение, выдаваемое для каждой команды (0 или 1).
8004 8005	8003 8004	Пароль	Пароль состоит из 4 байт ASCII. Необходимый уровень пароля зависит от команды. Эта информация выдаётся для каждой команды.
8006 8015	8005 8014	Дополнительные параметры	Дополнительные параметры определяют режим выполнения команды. Некоторые команды не имеют дополнительных параметров.
8016	8015	Зарезервировано	Должен быть установлен на 0 (значение по умолчанию).
8017	8016	Зарезервировано	Должен быть установлен на 8019 (значение по умолчанию).
8018	8017	Зарезервировано	Должен быть установлен на 8020 (значение по умолчанию).
8019	8018	Зарезервировано	Должен быть установлен на 8021 (значение по умолчанию).
8020	8019	Зарезервировано	-
8021	8020	Состояние команды	Когда команда выходит из состояния занятости, этот регистр содержит код завершения.
8022	8021	Размер буфера данных	Количество возвращённых байтов.
8023 8149	8022 8148	Буфер данных	Возвращаемые значения. Этот регистр пуст, если предыдущее слово равно 0.

Состояние команды

При завершении выполнения команды, регистр состояния команды содержит адрес модуля интеллектуального модульного блока (этот адрес не имеет никакого отношения к Modbus-adpecy) и идентификатор ошибки:

• Старшие значащие биты (MSB) дают адрес модуля блока IMU, генерирующего ошибку. Если команда посылается одному из модулей IMU, то обычно это тот же адрес, что содержится в регистре места назначения. Если команда посылается всем модулям IMU, это адрес первого модуля, возвращающего ошибку.

В нижеследующей таблице приведены адреса модулей:

Модуль	Адрес модуля IMU
Модуль техобслуживания	1 (0x01)
Щитовой индикатор FDM121	2 (0x02)
Модуль интерфейса Modbus	3 (0x03)
BSCM (модуль состояний и управления автоматического выключателя)	17 (0x11)
Расцепитель Micrologic	20 (0x14)

• Младшие значащие биты (LSB) дают идентификатор ошибки.

В нижеследующей таблице приведены идентификаторы ошибки:

Идентификатор ошибки	Описание
0	Успешное выполнение команды
1	Недостаточные права пользователя (неправильный пароль)
2	Нарушение доступа (переключатель блокировки модуля интерфейса Modbus в «запертом» положении). См. <i>Переключатель блокировки, стр. 13</i>)
3	Доступ для чтения невозможен
4	Доступ для записи невозможен
5	Невозможно выполнить требуемый сервис
6	Недостаточно памяти
7	Выделенная память слишком мала
8	Ресурс не доступен
9	Ресурс не существует
10	Ресурс уже существует
11	Ресурс в нерабочем состоянии
12	Доступ вне имеющейся свободной памяти
13	Слишком длинная строка
14	Недостаточно буферной памяти
15	Буферная память слишком велика
16	Входной аргумент за пределами допустимого диапазона
17	Требуемый уровень безопасности не поддерживается
18	Требуемый компонент не поддерживается
19	Команда не поддерживается
20	Входной аргумент имеет неподдерживаемое значение
21	Внутренняя ошибка во время команды
22	Истечение времени ожидания во время команды
23	Ошибка контрольной суммы во время команды

В таблице приведены идентификаторы ошибки общего характера. Если модуль или команда генерирует специфические ошибки, их описание даётся после соответствующей команды.

Примеры команд

Open Circuit Breaker (Отключение автоматического выключателя) В нижеследующей таблице описана последовательность действий, выполняемых на уровне ведущего аппарата дистанционного управления с целью посылки дистанционной команды на отключение автоматического выключателя с модулем BSCM (см. *Отключение автоматического выключателя, стр. 116*). Сама команда не имеет параметров.

Этап	Действие
1	Загрузите буфер (слова № 0 - 19)
	● Загрузите в слово № 0 значение 904 — код, соответствующий команде на отключение выключателя.
	● Загрузите в слово № 1 значение 10 — длину входных параметров. Сама команда не имеет параметров, 10 — длина
	фиксированной части.
	 Загрузите в слово № 2 значение 4353 (0х1101) — место назначения. Это значение является постоянной величиной команды
	и указано в описании команды.
	● Загрузите в слово № 3 значение 1.
	● Загрузите в слова № 4 и № 5 четыре байта ASCII для пароля уровня 3 или 4. Например, для пароля «ABcd» загрузите 16706
	(0х4142) в слово № 4 и 25444 (0х6364) в слово № 5.
	● Загрузите в слово № 17 значение 8019 — постоянную величину конфигурации команды.
	● Загрузите в слово № 18 значение 8020 — постоянную величину конфигурации команды.
	● Загрузите в слово № 19 значение 8021 — постоянную величину конфигурации команды.
2	Запишите этот буфер посредством операции записи блока (функция 16 Modbus) из 20 слов, начиная с регистра 8000.
3	Считайте регистр состояния команды 8021 и подождите, пока его содержимое показывает, что команда ещё находится в
	процессе исполнения
	(0x0003). Если состояние команды не изменится по истечении времени ожидания (1 с), проверьте соединение Modbus.
4	Считайте идентификатор ошибки в младших значащих битах (LSB) регистра 8021:
	● Если LSB <> 0, это значит, что в выполнении команды произошёл сбой. Чтобы определить причину этого сбоя, проверьте
	идентификатор ошибки (см. следующий пункт). Например, если регистр 8021 выдаёт 5121 (0х1401), то идентификатор
	ошибки равен 1, что свидетельствует о неправильном уровне пароля (пользовательские права не достаточны).
	 ■ Если LSB = 0, команда выполнена без ошибок.

Reset Energy Measurements (Сброс счётчиков энергии)

В нижеследующей таблице описана последовательность действий, выполняемых с целью посылки команды на сброс минимальных/максимальных значений энергии (см. *Reset Minimum/Maximum (Сброс минимальных/максимальных значений), стр. 102*). Сама команда имеет один параметр.

Этап	Действие
1	Загрузите буфер (слова № 0 - 19)
	● Загрузите в слово № 0 значение 46728 — код, соответствующий команде на сброс минимальных/максимальных значений.
	 Загрузите в слово № 1 значение 12 — длину входных параметров. Сама команда имеет один параметр, добавьте 2 байта к 10 — длине фиксированной части.
	 Загрузите в слово № 2 значение 5121 (0х1401) — место назначения. Это значение является постоянной величиной команды и указано в описании команды.
	● Загрузите в слово № 3 значение 1.
	 Загрузите в слова № 4 и № 5 четыре байта ASCII для пароля уровня 3 или 4. Например, для пароля «РW57» загрузите 20599 (0x5077) в слово № 4 и 13623 (0x3537) в слово № 5.
	 Загрузите в слово № 6 значение 512 (бит 0 установлен на один). Это значение требует сброса счётчика минимальных/ максимальных значений.
	● Загрузите в слово № 17 значение 8019 — постоянную величину конфигурации команды.
	● Загрузите в слово № 18 значение 8020 — постоянную величину конфигурации команды.
	● Загрузите в слово № 19 значение 8021 — постоянную величину конфигурации команды.
2	Запишите этот буфер посредством операции записи блока (функция 16 Modbus) из 20 слов, начиная с регистра 8000.
3	Считайте регистр состояния команды 8021 и подождите, пока его содержимое показывает, что команда ещё находится в процессе исполнения (0x0003). Если состояние команды не изменится по истечении времени ожидания (1 с), проверьте соединение Modbus.
4	Считайте идентификатор ошибки в младших значащих битах (LSB) регистра 8021:
	● Если LSB <> 0, это значит, что в выполнении команды произошёл сбой. Чтобы определить причину этого сбоя, проверьте идентификатор ошибки (см. следующий пункт). Например, если регистр 8021 выдаёт 5121 (0х1401), то идентификатор ошибки равен 1, что свидетельствует о неправильном уровне пароля (пользовательские права не достаточны).
	 ■ Если LSB = 0, команда выполнена без ошибок.

Read Date and Time (Чтение даты и времени)

В нижеследующей таблице описана последовательность действий, выполняемых с целью посылки команды на чтение даты и времени. Сама команда не имеет параметров. Дата и время возвращаются в буфер.

Этап	Действие
1	Загрузите буфер (слова № 0 - 19)
	● Загрузите в слово № 0 значение 768 — код, соответствующий команде на чтение даты/времени.
	 Загрузите в слово № 1 значение 10 – длину входных параметров. Сама команда не имеет параметров, 10 – длина фиксированной части.
	 Загрузите в слово № 2 значение 768 (0х0300) — место назначения. Это значение является постоянной величиной команды и указано в описании команды.
	● Загрузите в слово № 3 значение 0.
	● Загрузите в слова № 4 и № 5 значение 0х0000 (пароль не требуется).
	● Загрузите в слово № 17 значение 8019 — постоянную величину конфигурации команды.
	● Загрузите в слово № 18 значение 8020 — постоянную величину конфигурации команды.
	● Загрузите в слово № 19 значение 8021 — постоянную величину конфигурации команды.
2	Запишите этот буфер посредством операции записи блока (функция 16 Modbus) из 20 слов, начиная с регистра 8000.
3	Считайте регистр состояния команды 8021 и подождите, пока его содержимое показывает, что команда ещё находится в процессе исполнения (0x0003). Если состояние команды не изменится по истечении времени ожидания (1 с), проверьте соединение Modbus.
4	Считайте идентификатор ошибки в младших значащих битах (LSB) регистра 8021:
	 ■ Если LSB <> 0, это значит, что в выполнении команды произошёл сбой. Чтобы определить причину этого сбоя, проверьте
	идентификатор ошибки (см. следующий пункт). Например, если регистр 8021 выдаёт 5121 (0х1401), то идентификатор ошибки равен 1, что свидетельствует о неправильном уровне пароля (пользовательские права не достаточны).
	■ Если LSB = 0, команда выполнена без ошибок.
5	Если ошибок нет, считайте длину буфера данных в регистре 8022. Её значение должно быть 8 для данной команды.
6	В буфере данных:
	● регистр 8023 показывает месяц в старших значащих битах (MSB) и день в младших значащих битах (LSB);
	● регистр 8024 показывает сдвиг лет в MSB (добавьте 2000, чтобы узнать год) и время в LSB;
	 ● регистр 8025 показывает минуты в MSB и секунды в LSB.
	• регистр 8026 показывает миллисекунды.

Управление датой

Введение

Каждый модуль интеллектуального модульного блока IMU использует его дату для присвоения временных меток событиям и хронологическим протоколам.

Обновление даты блока IMU происходит в два этапа:

- 1. Le Ведущий Modbus synchronise le module d'interface Modbus (synchronisation externe).
- 2. Le module d'interface Modbus synchronise les modules IMU (synchronisation interne).

Формат даты

Информация о дате закодирована в трёх регистрах:

- Регистры 1 и 2 возвращают дату, выраженную в количестве секунд, прошедших с 01.01.2000:
 - Регистр 1 возвращает старшие значащие биты (MSB) даты.
 - Регистр 2 возвращает младшие значащие биты (LSB) даты.
- Регистр 3 возвращает дополнение в миллисекундах с уточнением даты.

В нижеследующей таблице дано описание регистров даты:

Регистр	Тип	Бит	Описание
Регистр 1 Регистр 2	UDINT	-	Дата в количестве секунд с 01.01.2000
Регистр 3	UINT	_	Дополнение в миллисекундах с уточнением даты
		09	Кодирует миллисекунды
		1011	Не используется
		12	Состояние внешней синхронизации модуля интерфейса Modbus 0 = внешняя синхронизация модуля интерфейса Modbus не выполнялась в течение последних двух часов. 1 = внешняя синхронизация модуля интерфейса Modbus была выполнена в течение последних двух часов.
		13	Состояние внутренней синхронизации модуля блока IMU 0 = внутренняя синхронизация модуля IMU не выполнялась. 1 = внутренняя синхронизация модуля IMU была выполнена.
		14	Синхронизация с момента последнего включения под напряжение 0 = нет 1 = да
		15	Зарезервировано

Внешняя синхронизация

Существуют два способа выполнения пользователем внешней синхронизации модуля интерфейса Modbus:

- с помощью утилиты RSU (Remote Setting Utility);
- посредством запроса Modbus, адресованного модулю интерфейса Modbus. Запрос Modbus транслируется в широковещательном режиме на несколько модулей интерфейса Modbus с целью их синхронизации или передаётся на один определённый модуль интерфейса Modbus.

Модуль интерфейса Modbus считается синхронизированным методом внешней синхронизации, если последняя синхронизация имела место в течение последних двух часов (бит 12 = 1).

Внутренняя синхронизация

Когда модуль интерфейса Modbus получает запрос на синхронизацию, он транслирует его на все модули блока IMU (расцепитель Micrologic, BSCM, щитовой индикатор FDM121 и т.д.).

Модуль блока IMU считается синхронизированным методом внутренней синхронизации (бит 13 = 1), если последняя синхронизация имела место в течение последних двух часов (бит 12 = 1).

Счётчик даты

Дата отсчитывает в количестве секунд, прошедших с 01.01.2000.

В случае потери питания модуля блока ІМU, счётчик времени сбрасывается и снова начинает отсчёт с 01.01.2000.

Если после потери питания выполняется внешняя синхронизация, счётчик времени актуализируется и преобразовывает дату синхронизации в точное количество секунд с 01.01.2000.

Если с момента последней потери питания синхронизация не выполнялась, бит 14 = 0.

Если с момента последней потери питания синхронизация была выполнена, бит 14 = 1.

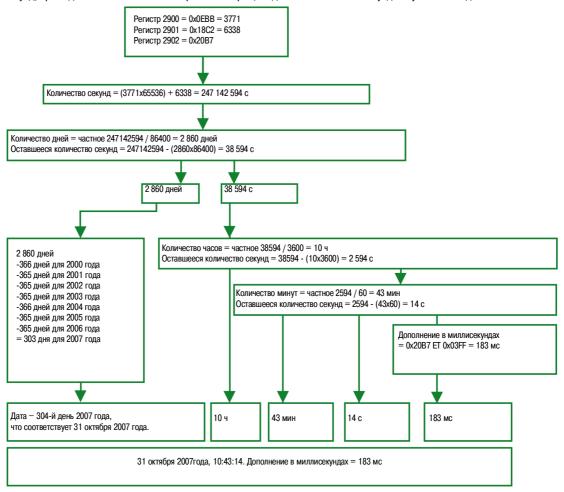
Принцип преобразования даты

Чтобы преобразовать дату из количества секунд с 01.01.2000 в текущую дату, необходимо применить следующие правила:

- 1 невисокосный год = 365 дней
- 1 високосный год = 366 дней
 Годы 2000, 2004, 2008, 2012,...(кратные 4) являются високосными годами (кроме 2100 года).
- 1 день = 86400 секунд
- 1 час = 3600 секунд
- 1 минута = 60 секунд

В нижеприведённой таблице описана последовательность преобразования даты из количества секунд с 01.01.2000 в текущую дату:

Этап	Действие
1	S = количество секунд с 01.01.2000 = (содержимое регистра 1 x 65536) + (содержимое регистра 2)
2	S = (86 400 x D) + s D = количество дней с 01.01.2000 s = оставшееся количество секунд
3	D = (NL x 365) + (L x 366) + d NL = количество невисокосных лет с 2000 года L = количество високосных лет с 2000 года d = оставшееся количество дней для текущего года
4	Дата = d + 1 = текущая дата. Например, если d = 303, текущая дата соответствует 304-му дню года, что соответствует 31 октября 2007 года.
5	s = (3600 x h) + s' $h = количество часов$ $s' = оставшееся количество секунд$
6	s' = (60 x m) + s'' m = количество минут s'' = оставшееся количество секунд
7	Текущее время: h:m:s''


Дополнение даты в миллисекундах кодируется на битах 0...9 регистра 3. Биты 10...15 возвращают уточнение даты (см. *Формат даты, стр. 40*).

Чтобы получить дополнение в миллисекундах, пользователь должен применить логическую операцию «И» между значением регистра и 0x03FF.

Например, если регистр 3 возвращает 0x15B7, дополнение в миллисекундах составляет 0x15B7 И 0x03FF = 0x01B7 = 439 мс.

Пример преобразования даты

Следующий пример показывает преобразование даты сброса минимальных/максимальных значений тока (см. *Время сброса минимальных/максимальных значений, стр. 58*). Регистры 2900 и 2901 возвращают дату, выраженную в количестве секунд, прошедших с 01.01.2000. Регистр 2902 возвращает дополнение в миллисекундах с уточнением даты.

Механизм хронологического протокола

Общее описание

Регистры хронологического протокола Modbus позволяют пользователю отслеживать появление определённых событий и соответствующие даты.

Имеются четыре хронологических протокола событий:

- Хронологический протокол аварийно-предупредительных сигналов: формат протокола аварийно-предупредительных сигналов соответствует серии из 10 записей. Каждая запись состоит из 5 регистров, описывающих один аварийнопредупредительный сигнал. См. Хронологический протокол аварийно-предупредительных сигналов, стр. 63.
- Хронологический протокол аварийных отключений: формат хронологического протокола аварийных отключений соответствует серии из 17 записей. Каждая запись состоит из 7 регистров, описывающих одно аварийное отключение.
 См. Хронологический протокол аварийных отключений, стр. 65.
- Хронологический протокол операций техобслуживания: формат хронологического протокола операций техобслуживания соответствует серии из 10 записей. Каждая запись состоит из 5 регистров, описывающих одну операцию техобслуживания. См. Хронологический протокол операций техобслуживания, стр. 67.
- Хронологический протокол событий модуля BSCM: формат хронологического протокола событий модуля BSCM соответствует серии из 10 записей. Каждая запись состоит из 5 регистров, описывающих одно событие модуля BSCM. См. Хронологический протокол событий, стр. 112.

Механизм хронологического протокола

Каждому событию присваивается временная метка с использованием формата даты, описанного в пункте *Формат даты, стр. 40.*

Когда формат исторического протокола заполнен, запись самого первого события удаляется, чтобы освободить место для записи самого последнего события, которая располагается наверху формата.

Записи располагаются в порядке убывания времени появления, соответственно событие, появившееся последним, находится в первой записи.

В следующих таблицах описан механизм хронологического протокола из 10 записей:

Перед событием Е

Запись	1	2	3	4	5	6	7	8	9	10
Событие	E-1 (самое последнее событие)	E-2	E-3	E-4	E-5	E-6	E-7	E-8	E-9	E-10 (самое первое событие)

После события Е

Запись	1	2	3	4	5	6	7	8	9	10
Событие	E (самое последнее событие)	E-1	E-2	E-3	E-4	E-5	E-6	E-7	E-8	E-9 (самое первое событие)

После события Е, событие Е-10 удаляется.

Чтение хронологического протокола

Для чтения записи хронологического протокола необходим запрос на операцию чтения блока (см. функцию Modbus Чтение n входных слов, код функции = 4, *Функции чтения*, *стр. 25*). Например, для чтения самой последней записи аварийно-предупредительных сигналов нужен запрос на операцию чтения блока из 5 регистров (см. *Хронологический протокол аварийно-предупредительных сигналов, стр. 63*).

Кроме того, для чтения п последних записей формата хронологического протокола необходим запрос на операцию чтения блока из (m) x (n) регистров, где m — число регистров, составляющих запись. Чтение хронологического протокола запускается в начале чтения блока.

Например, для чтения трёх последних записей аварийных отключений формата исторического протокола аварийных отключений нужен запрос на операцию чтения блока из 7 х 3 = 21 регистров (см. *Хронологический протокол аварийных отключений, стр. 65*):

- Первые 7 регистров описывают первую запись формата хронологического протокола аварийных отключений (самое последнее аварийное отключение).
- Следующие 7 регистров описывают вторую запись формата хронологического протокола аварийных отключений.
- Последние 7 регистров описывают третью запись формата хронологического протокола аварийных отключений.

Регистры хронологического протокола, когда они не используются, возвращают 32768 (0х8000).

Таблицы регистров

Общее описание

В следующих разделах описаны регистры Modbus расцепителя Micrologic и присоединённые к нему модули. Эти регистры выдают информацию, которая может быть считана, например, измерения электрических величин, конфигурация защиты, данные контроля. Командный интерфейс позволяет пользователю изменять эти регистры в контролируемом режиме.

Правила представления регистров Modbus следующие:

- Регистры группируются в зависимости от модуля, с которым они связаны:
 - Расцепитель Micrologic: см. Регистры расцепителя Micrologic, стр. 48.
 - Модуль BSCM (модуль состояний и управления автоматического выключателя): см. Регистры модуля BSCM, стр. 108.
 - Модуль интерфейса Modbus: см. Регистры модуля интерфейса Modbus, стр. 122.
- Для каждого модуля регистры группируется в форме логически связанных информационных таблиц. Таблицы расположены по возрастанию адреса.
- Описание команд для каждого модуля дано:
 - Расцепитель Micrologic: см. Команды расцепителя, стр. 93.
 - Модуль BSCM: см. Команды модуля BSCM, стр. 114.
 - Команды модуля интерфейса Modbus: см. Команды модуля интерфейса Modbus, стр. 126.

В *Перекрёстных ссылках регистров Modbus, стр. 145*, дан упорядоченный список регистров с перекрёстной ссылкой на страницу, где эти регистры описаны.

Формат таблицы

Таблицы регистров состоят из следующих граф:

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазо	A/E	Описание
						Н		

- Регистр: 16-битовый номер регистра в форме десятичного числа.
- Адрес: 16-битовый адрес регистра адресов (на единицу меньший, чем номер регистра).
- Ч/3 : регистр либо только для чтения (Ч) либо для чтения-записи (Ч/3).
- X: масштаб. Масштаб 10 означает, что регистр содержит значение, умноженное на 10. Следовательно, фактическое значение — это значение регистра, делённое на 10.

Пример

Регистр 1034 содержит активную мощность фазы 1 (см. *Активная мощность, стр. 51*). Единица измерения — кВт, масштаб — 10.

Если регистр возвращает 231, это значит, что фактическая активная мощность фазы 1 составляет 231/10 = 23,1 кВт = 23100 BT.

- Ед. изм.: единица измерения, в которой выражена информация, после умножения на масштабный коэффициент.
- Тип: тип закодированных данных.
- Диапазон: диапазон разрешённых значений для данной переменной величины, обычно подмножество того, что разрешено форматом.
- А/Е: тип измерения расцепителя Micrologic, поддерживающего переменную величину.
 - тип А (амперметр): измерение тока;
 - тип Е (Энергия): измерение тока, напряжения, мощности и энергии.
- Описание: информация о регистре и применяемых ограничениях.

Тип данных

В таблицах регистров Modbus фигурируют следующие типы данных:

Обозначение	Описание	Диапазон		
UINT	16-битовое целое число без знака	065535		
INT	16-битовое целое число со знаком	-32768+32767		
UDINT	32-битовое целое число без знака	04 294 967 295		
DINT	32-битовое целое число со знаком	-2 147 483 648+2 147 483 647		
STRING	Текстовая строка	1 байт на символ		

Примечания

- В графе **Тип** указано количество считываемых регистров для получения переменной величины. Например, UINT требует чтения одного слова, а DINT двух слов.
- Некоторые переменные величины должны читаться как множество, например, переменные защиты от перегрузок. Всё множество должно читаться как единый блок. Чтение части даёт ошибку (см. *Чтение хронологического протокола, стр.* 44).
- Чтение из недокументированного адреса приводит к исключительной ситуации Modbus (см. Исключительные коды Modbus, стр. 29).
- Переменные величины, хранящиеся в двух словах (например, энергия или даты), хранятся в формате с прямым порядком байтов, при котором старшее значащее слово передаётся первым, а младшее значащее слово – вторым.
- Числовые значения даются в десятичной форме. Когда целесообразно иметь соответствующее значение в шестнадцатеричном формате, оно показывается как постоянная величина в языке C: 0xdddd. Например, десятичное значение 123 представляется в шестнадцатеричной форме: 0x007B.
- Нестандартные и неприменимые значения представляются как 32768 (0х8000 или 0х8000000 для 32-битовых значений).
- Внедиапазонные значения представляются как 32767 (0х7FFF, только для 16-битовых значений).
- для измерений, зависящих от наличия нейтрали (определяется регистром 3314, см. *Тип системы, стр. 80*), чтение значения возвращает 32768 (0х8000), если не применяется. Для каждой таблицы, где это имеет место, соответствующее объяснение даётся внизу страницы.

Данные расцепителя Micrologic

3

Общие сведения

Введение

В данном разделе описаны данные расцепителя Micrologic.

Содержание данного раздела Данный раздел содержит следующие подразделы:

Подраздел	Тема	Страница
3.1	Регистры расцепителя Micrologic	48
3.2	Команды расцепителя Micrologic	93

3.1 Регистры расцепителя Micrologic

Общие сведения

Введение

В данном подразделе описаны регистры расцепителя Micrologic.

Содержание данного подраздела Данный подраздел содержит следующие темы:

Тема	Страница
Измерения в реальном времени	49
Минимальные/максимальные значения величин, измеряемых в реальном времени	54
Измерения энергии	55
Измерения потребления	56
Время сброса минимальных/максимальных значений	58
Идентификация	59
Состояние	61
Хронологический протокол аварийно-предупредительных сигналов	63
Хронологический протокол аварийных отключений	65
Хронологический протокол операций техобслуживания	67
Предварительные аварийно-предупредительные сигналы	69
Аварийно-предупредительные сигналы, задаваемые пользователем	71
Параметры защиты	75
Конфигурация модуля SDx	79
Параметры измерения	80
Информация с указанием даты и времени	82
Индикаторы техобслуживания	88
Прочие параметры	91

Измерения в реальном времени

Общее описание

Менеджер измерений обновляет величины в реальном времени каждую секунду. Измерения в реальном времени включ...ют в себя следующие измерения:

- напряжение и небаланс напряжения;
- ток и небаланс тока;
- активная, реактивная, полная мощность и мощность гармонических искажений;
- реактивная мощность с гармоникой;
- коэффициент мощности и коэффициент мощности основной гармоники;
- THD (общее гармоническое искажение).

Напряжение

Регистр = 0, если напряжение < 25 В.

Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
999	Ч	1	В	UINT	0850	Е	Действующее линейное напряжение V12
1000	Ч	1	В	UINT	0850	Е	Действующее линейное напряжение V23
1001	Ч	1	В	UINT	0850	Е	Действующее линейное напряжение V31
1002	Ч	1	В	UINT	0850	Е	Фазное напряжение V1N (1)
1003	Ч	1	В	UINT	0850	Е	Действующее фазное напряжение V2N (1)
1004	Ч	1	В	UINT	0850	Е	Действующее фазное напряжение V3N (1)
1005	Ч	1	В	UINT	0850	E	Среднеерифметическое V12, V23 и V31: (V12+V23+V31) / 3 = Vavg L-L.
1006	Ч	1	В	UINT	0850	E	Среднеерифметическое V1N, V2N и V3N: (V1N+V2N+V3N) / 3 = Vavg L-N (1)
1144	Ч	1	В	UINT	0850	Е	Vmax: максимум V12, V23 и V31
1145	Ч	1	В	UINT	0850	Е	Vmin: минимум V12, V23 и V31
	999 1000 1001 1002 1003 1004 1005 1006	999	999	999	999	999	999

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 30 или 31. См. Тип системы, стр. 80.

Небаланс напряжения

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
1008	1007	Ч	10	%	INT	-1000+1000	E	Небаланс линейного напряжения V12 по отношению к среднемурифметическому линейных напряжений
1009	1008	Ч	10	%	INT	-1000+1000	E	Небаланс линейного напряжения V23 по отношению к среднемурифметическому линейных напряжений
1010	1009	Ч	10	%	INT	-1000+1000	E	Небаланс линейного напряжения V31 по отношению к среднемурифметическому линейных напряжений
1011	1010	Ч	10	%	INT	-1000+1000	Е	Фазное напряжение V1N по отношению к среднемурифметическому фазных напряжений
1012	1011	Ч	10	%	INT	-1000+1000	E	Фазное напряжение V2N по отношению к среднемурифметическому фазных напряжений
1013	1012	Ч	10	%	INT	-1000+1000	E	Фазное напряжение V3N по отношению к среднемурифметическому фазных напряжений
1014	1013	Ч	10	%	INT	-1000+1000	E	Максимальное значение небаланса линейного напряжения в регистрах 1008, 1009 и 1010
1015	1014	Ч	10	%	INT	-1000+1000	E	Максимальное значение небаланса фазного напряжения в регистрах 1011, 1012 и1013

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 30 или 31. См. *Тип системы, стр. 80*.

Ток

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
1016	1015	Ч	1	Α	UINT	020xln	A/E	Действующий ток фазы 1 : I1
1017	1016	Ч	1	Α	UINT	020xln	A/E	Действующий ток фазы 2 : I2
1018	1017	Ч	1	Α	UINT	020xln	A/E	Действующий ток фазы 3: 13
1019	1018	Ч	1	Α	UINT	020xln	A/E	Действующий ток в нейтрали: IN (1)
1020	1019	Ч	1	Α	UINT	020xln	A/E	Максимум I1, I2, I3, и IN
1021	1020	Ч	1	%	UINT	04000	A/E	Ток замыкания на землю в % порога lg
1022	1021	Ч	1	%	UINT	04000	A/E	Ток утечки на землю в % порога I?n
1026	1025	Ч	1	Α	UINT	020xln	A/E	Минимум 11, I2 и I3
1027	1026	Ч	1	Α	UINT	020xln	A/E	Среднеерифметическое I1, I2 и I3: (I1+I2+I3) / 3 = lavg

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 31 или 40. См. *Тип системы, стр. 80*.

Небаланс тока

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
1028	1027	Ч	10	%	INT	-1000+1000	E	Небаланс тока I1 по отношению к среднемурифметическому фазных токов
1029	1028	Ч	10	%	INT	-1000+1000	E	Небаланс тока I2 по отношению к среднемурифметическому фазных токов
1030	1029	Ч	10	%	INT	-1000+1000	E	Небаланс тока I3 по отношению к среднемурифметическому фазных токов
1031	1030	Ч	10	%	INT	-1000+1000	E	Небаланс тока IN по отношению к среднемурифметическому фазных токов
1032	1031	Ч	10	%	INT	-1000+1000	E	Максимальное значение небаланса тока в регистрах 1028, 1029 и 1030

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 31 или 40. См. *Тип системы, стр. 80*.

Активная мощность

Знак активной мощности зависит от конфигурации регистр... 3316. См. Знак мощности, стр. 80.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
1034	1033	Ч	10	кВт	INT	-10000+10000	E	Активная мощность фазы 1 : Р1 (1)
1035	1034	Ч	10	кВт	INT	-10000+10000	E	Активная мощность фазы 2 : Р2 (1)
1036	1035	Ч	10	кВт	INT	-10000+10000	Е	Активная мощность фазы 3 : Р3 (1)
1037	1036	Ч	10	кВт	INT	-30000+30000	Е	Суммарная активная мощность: Ptot

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 30 или 31. См. *Тип системы, стр. 80*.

Реактивная мощность

Знак реактивной мощности зависит от конфигурации регистр... 3316. См. Знак мощности, стр. 80.

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
1038	1037	Ч	10	квар	INT	-10000+10000	Е	Реактивная мощность фазы 1 : Q1 (1)
1039	1038	Ч	10	квар	INT	-10000+10000	Е	Реактивная мощность фазы 2 : Q2 (1)
1040	1039	Ч	10	квар	INT	-10000+10000	Е	Реактивная мощность фазы 3 : Q3 (1)
1041	1040	Ч	10	квар	INT	-30000+30000	Е	Суммарная реактивная мощность: Qtot

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 30 или 31. См. *Тип системы, стр. 80.*

Полная мощность

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
1042	1041	Ч	10	кВА	UINT	010000	E	Полная мощность фазы 1 : S1 (1)
1043	1042	Ч	10	кВА	UINT	010000	E	Полная мощность фазы 2 : S2 (1)
1044	1043	Ч	10	кВА	UINT	010000	E	Полная мощность фазы 3 : S3 (1)
1045	1044	Ч	10	кВА	UINT	030000	E	Суммарная полная мощность: Stot

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 30 или 31. См. *Тип системы, стр. 80*.

Коэффициент мощности

Знак коэффициента мощности зависит от конфигурации регистр... 3318. См. Знак коэффициента мощности, стр. 81.

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
1046	1045	Ч	100	-	INT	-100+100	E	Коэффициент мощности фазы 1 : PF1 (1)
1047	1046	Ч	100	-	INT	-100+100	E	Коэффициент мощности фазы 2 : PF2 (1)
1048	1047	Ч	100	-	INT	-100+100	E	Коэффициент мощности фазы 3 : PF3 (1)
1049	1048	Ч	100	-	INT	-100+100	Е	Суммарный коэффициент мощности : РF

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 30 или 31. См. Тип системы, стр. 80.

Коэффициент мощности основной гармоники (cos ϕ)

Знак коэффициента мощности основной гармоники зависит от конфигурации регистр... 3318. См. Знак коэффициента мощности, стр. 81.

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
1050	1049	Ч	100	_	INT	-100+100	E	Коэффициент мощности основной гармоники фазы 1 : cosφ1 (1)
1051	1050	Ч	100	_	INT	-100+100	E	Коэффициент мощности основной гармоники фазы 2 : $\cos \varphi$ 2 (1)
1052	1051	Ч	100	_	INT	-100+100	E	Коэффициент мощности основной гармоники фазы 3 : cosφ3 (1)
1053	1052	Ч	100	_	INT	-100+100	E	Суммарный коэффициент мощности основной гармоники: соѕф

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 30 или 31. См. *Тип системы, стр. 80.*

Частота

Если программное обеспечение не может вычислить частоту, оно возвращает Not Evaluated = 32768 (0x8000).

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
1054	1053	Ч	10	Гц	UINT	1504400	Е	Частота сети: F

Реактивная мощность основной гармоники

Знак реактивной мощности зависит от конфигурации регистр... 3316. См. Знак мощности, стр. 80.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
1080	1079	Ч	10	квар	INT	-10000 +10000	E	Реактивная мощность основной гармоники фазы 1 : Q1 Fund (1)
1081	1080	Ч	10	квар	INT	-10000 +10000	E	Реактивная мощность основной гармоники фазы 2 : Q2 Fund (1)
1082	1081	Ч	10	квар	INT	-10000 +10000	Е	Реактивная мощность основной гармоники фазы 3 : Q3 Fund (1)
1083	1082	Ч	10	квар	INT	-30000 +30000	Е	Суммарная реактивная мощность основной гармоники : Qtot Fund

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 30 или 31. См. *Тип системы, стр. 80.*

Мощность гармонических искажений

Регистр	Адрес	4/3	х	Ед. изм.	Тип	Диапазон	A/E	Описание
1088	1087	Ч	10	квар	UINT	010000	Е	Мощность гармонических искажений фазы 1 : D1 (1)
1089	1088	Ч	10	квар	UINT	010000	Е	Мощность гармонических искажений фазы 2 : D2 (1)
1090	1089	Ч	10	квар	UINT	010000	Е	Мощность гармонических искажений фазы 3 : D3 (1)
1091	1090	Ч	10	квар	UINT	030000	Е	Суммарная мощность гармонических искажений : Dtot

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 30 или 31. См. Тип системы, стр. 80.

Общее гармоническое искажение (THD)

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
1092	1091	Ч	10	%	UINT	032766	E	Общее гармоническое искажение V12 по отношению к основной частоте
1093	1092	Ч	10	%	UINT	032766	E	Общее гармоническое искажение V23 по отношению к основной частоте
1094	1093	Ч	10	%	UINT	032766	E	Общее гармоническое искажение V31 по отношению к основной частоте
1095	1094	Ч	10	%	UINT	032766	E	Общее гармоническое искажение V1N по отношению к основной частоте
1096	1095	Ч	10	%	UINT	032766	E	Общее гармоническое искажение V2N по отношению к основной частоте
1097	1096	Ч	10	%	UINT	032766	E	Общее гармоническое искажение V3N по отношению к основной частоте
1098	1097	Ч	10	%	UINT	032766	E	Общее гармоническое искажение I1 по отношению к основной частоте
1099	1098	Ч	10	%	UINT	032766	E	Общее гармоническое искажение I2 по отношению к основной частоте
1100	1099	Ч	10	%	UINT	032766	E	Общее гармоническое искажение I3 по отношению к основной частоте

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 30 или 31. См. Тип системы, стр. 80.

Тепловая память электродвигателя

Тепловая память электродвигателя доступна только для применения с использованием электродвигателя.

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
1144	1143	Ч	1	%	UINT	032766	E	Тепловая память Ith

Минимальные/максимальные значения величин, измеряемых в реальном времени

Правила измерений минимальных/ максимальных значений

Измерения минимальных и максимальных значений учитывают абсолютное значение измерений в реальном времени. В силу этого применяется следующее правило:

0<10<200<-400<600<-3800.

В этом случае:

- счётчик минимальных значений = 0
- счётчик максимальных значений = -3800

Примечание: это правило не применяется к коэффициенту мощности (PF) и к коэффициенту мощности основной гармоники (cos ϕ):

- РF тах (или сосф тах) получается для наименьшего положительного значения РF (или сосф).
- PF min (или соѕф min) получается для наибольшего отрицательного значения PF (или соѕф).

Команда сброса минимальных/максимальных значений (код команды = 46728) конфигурирует содержимое регистров измерений минимальных/максимальных значений в реальном времени.

Минимальные значения измерений в реальном времени Регистры 1300...1599 содержат минимальные значения измеряемых в реальном времени параметров:

 Адрес минимального значения измеряемого в реальном времени параметр... равен адресу измеряемого в реальном времени параметр... плюс 300.

Примеры

Регистр 1300 содержит минимальное значение линейного напряжения V12 (регистр 1000). Регистр 1316 содержит минимальное значение тока фазы 1 (регистр 1016).

- Порядок регистров тот же, что у измеряемых в реальном времени переменных величин.
- Масштабы для минимальных значений те же, что для измеряемых в реальном времени параметров.
- Минимальные значения небалансов тока и напряжения не применяются.
- Минимальные значения Imin (регистр 1026), Vmax (регистр 1145) и Vmin (регистр 1146) не применяются.

Максимальные значения измерений в реальном времени Регистры 1600...1899 содержат максимальные значения измеряемых в реальном времени параметров:

 Адрес максимального значения измеряемого в реальном времени параметр... равен адресу измеряемого в реальном времени параметр... плюс 600

Примеры

Регистр 1600 содержит максимальное линейного напряжения V12 (регистр 1000). Регистр 1616 содержит максимальное значение тока фазы 1 (регистр 1016).

- Порядок регистров тот же, что у измеряемых в реальном времени переменных величин.
- Масштабы для максимальных значений те же, что для измеряемых в реальном времени параметров.
- Максимальные значения Imin (регистр 1026), Vmax (регистр 1145) и Vmin (регистр 1146) не применяются.

Измерения энергии

Общее описание

Менеджер измерений обновляет измерения энергии каждую секунду. Результаты измерений энергии записываются раз в час в энергонезависимую память расцепителя Micrologic.

Измерения энергии включ...ют в себя следующие измерения:

- активная энергия Ер;
- реактивная энергия Еq;
- полная энергия Es;
- потреблённая активная энергия (Epln) или выданная активная энергия (EpOut), в зависимости от конфигурации регистр... 3316. См. Знак мощности, стр. 80.
- потреблённая реактивная энергия (Eqln) или выданная реактивная энергия (EqOut), в зависимости от конфигурации регистр... 3316. См. Знак мощности, стр. 80.
- активная энергия и реактивная энергия суммируются в соответствии с конфигурацией регистр... 3324 (абсолютное суммирование по умолчанию). См. Метод суммирования энергии, стр. 81.

Примеры

Если Ер = 7589 кВт⋅ч, тогда:

- Регистр 2000 = 0 (0x0000)
- Регистр 2001 = 7589 (0x1DA5)

Если Ер = 4589625 кВт⋅ч, тогда:

- Регистр 2000 = 70 (0x0046)
- Регистр 2001 = 2105 (0x0839)

 $4589625 = 70 \times 65536 + 2105$

Команда сброса минимальных/максимальных значений (код команды = 46728) конфигурирует содержимое регистров энергии.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
2000 2001	1999 2000	4/3	1	кВт∙ч	DINT	-1 999 999 999 +1 999 999 999	E	Активная энергия: Ер
2004 2005	2003 2004	4/3	1	квар∙ч	DINT	-1 999 999 999 +1 999 999 999	E	Реактивная энергия: Eq
2008 2009	2007 2008	4/3	1	кВт∙ч	UDINT	01 999 999 999	Е	Потреблённая активная энергия: EpIn
2012 2013	2011 2012	4/3	1	кВт∙ч	UDINT	01 999 999 999	Е	Выданная активная энергия: EpOut
2016 2017	2015 2016	4/3	1	квар∙ч	UDINT	01 999 999 999	E	Потреблённая реактивная энергия: EqIn
2020 2021	2019 2020	4/3	1	квар∙ч	UDINT	01 999 999 999	Е	Выданная реактивная энергия: EqOut
2024 2025	2023 2024	4/3	1	кВА∙ч	UDINT	01 999 999 999	Е	Полная энергия: Es
2028 2029	2027 2028	Ч	1	кВт∙ч	UDINT	01 999 999 999	E	Накапливаемая потреблённая активная энергия (без возможности сброса): EpIn
2030 2031	2029 2030	Ч	1	кВт∙ч	UDINT	01 999 999 999	E	Накапливаемая выданная активная энергия (без возможности сброса): EpOut

Измерения потребления

Общее описание

Регистры потребления включ...ют в себя:

- потребление тока;
- потребление активной, реактивной и полной энергии.

Продолжительность окна потребления тока зависит от конфигурации регистр... 3352. См. Интервал потребления, стр. 81.

Продолжительность и тип окна потребления мощности зависит от конфигурации регистров 3354 и 3355. См. *Интервал потребления, стр. 81*.

Если окно скользящего типа, менеджер измерений обновляет измерения потребления каждую секунду.

Если окно фиксированного типа, менеджер измерений обновляет измерения потребления в конце интервала окна.

Потребление тока

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
2200	2199	Ч	1	Α	UINT	020xln	E	Потребление тока фазы 1 : I1 Dmd
2201	2200	Ч	1	Α	UINT	020xln	Е	Потребление тока фазы 2 : I2 Dmd
2202	2201	Ч	1	Α	UINT	020xln	E	Потребление тока фазы 3 : I3 Dmd
2203	2202	Ч	1	Α	UINT	020xln	E	Потребление тока нейтрали : IN Dmd (1)
2204	2203	Ч	1	Α	UINT	020xln	E	Максимум потребления тока фазы 1 : I1 Peak Dmd
2205	2204	Ч	1	Α	UINT	020xln	Е	Максимум потребления тока фазы 2 : 12 Peak Dmd
2206	2205	Ч	1	Α	UINT	020xln	Е	Максимум потребления тока фазы 3 : 13 Peak Dmd
2207	2206	Ч	1	Α	UINT	020xln	Е	Максимум потребления тока нейтрали : IN Peak Dmd (1)

⁽¹⁾ Величина недоступна при использовании электродвигателя, ... также если тип системы в регистре 3314 составляет 31 или 40. См. Тип системы, стр. 80.

Потребление активной мощности

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
2224	2223	Ч	10	кВт	INT	-30000+30000	E	Потребление суммарной активной мощности : P Dmd (1)
2225	2224	Ч	10	кВт	INT	-30000+30000	E	Максимум потребления суммарной активной мощности

⁽¹⁾ Если окно фиксированного типа, это значение обновляется в конце интервала окна. Если окно скользящего типа, значение обновляется каждую минуту.

Потребление реактивной мощности

Регистр	Адрес	4/3	х	Ед. изм.	Тип	Диапазон	A/E	Описание
2230	2229	Ч	10	квар	INT	-30000+30000	E	Потребление суммарной реактивной мощности : Q Dmd (1)
2231	2230	Ч	10	квар	INT	-30000+30000	E	Максимум потребления суммарной реактивной мощности : Q Peak Dmd

⁽¹⁾ Если окно фиксированного типа, это значение обновляется в конце интервала окна. Если окно скользящего типа, значение обновляется каждую минуту.

Потребление полной мощности

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
2236	2235	Ч	10	кВА	UINT	030000	E	Потребление суммарной полной мощности : S Dmd (1)
2237	2236	Ч	10	кВА	UINT	030000	Е	Максимум потребления суммарной полной мощности : S Peak Dmd

⁽¹⁾ Если окно фиксированного типа, это значение обновляется в конце интервала окна. Если окно скользящего типа, значение обновляется каждую минуту.

Время сброса минимальных/максимальных значений

Время сброса минимальных/ максимальных значений

Регистры времени сброса минимальных/максимальных значений позволяют пользователю знать все даты, относящиеся к последней команде на сброс минимальных/максимальных значений.

Команда на сброс минимальных/максимальных значений (код команды 46728) конфигурирует содержимое регистров сброса минимальных/максимальных значений.

Для чтения времени сброса минимальных/максимальных значений необходим запрос на операцию чтения блока из 30 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	х	Ед. изм.	Тип	Диапазон	A/E	Описание (1)
2900 2901	2899 2900	4/3	1	С	UDINT	-	A/E	Дата сброса минимального/максимального тока, в количестве секунд с 01.01.2000
2902	2901	4/3	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты
2903 2904	2902 2903	4/3	1	С	UDINT	_	Е	Дата сброса минимального/максимального напряжения, в количестве секунд с 01.01.2000
2905	2904	4/3	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты
2906 2907	2905 2906	4/3	1	С	UDINT	-	Е	Дата сброса минимальной/максимальной мощности (P, Q, S), в количестве секунд с 01.01.2000
2908	2907	4/3	1	мс	UINT	-	Е	Дополнение в мс с уточнением даты
2909 2910	2908 2909	4/3	1	С	UDINT	-	Е	Дата сброса минимального/максимального коэффициента мощности и cos j, в количестве секунд с 01.01.2000
2911	2910	4/3	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты
2912 2913	2911 2912	4/3	1	С	UDINT	-	Е	Дата сброса минимального/максимального общего гармонического искажения, в количестве секунд с 01.01.2000
2914	2913	4/3	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты
2915 2916	2914 2915	4/3	1	С	UDINT	_	E	Дата сброса максимального значения потребления тока, в количестве секунд с 01.01.2000
2917	2916	4/3	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты
2918 2919	2917 2918	4/3	1	С	UDINT	-	Е	Дата сброса максимального значения потребления активной, реактивной и полной мощности, в количестве секунд с 01.01.2000
2920	2919	4/3	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты
2921 2922	2920 2921	4/3	1	С	UDINT	_	Е	Дата сброса минимальной/максимальной частоты, в количестве секунд с 01.01.2000
2923	2922	4/3	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты
2924 2925	2923 2924	4/3	1	С	UDINT	-	Е	Дата сброса минимальной/максимальной тепловой памяти электродвигателя, в количестве секунд с 01.01.2000 (только для применения с использованием электродвигателя)
2926	2925	4/3	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты
2927 2928	2926 2927	4/3	1	С	UDINT	-	Е	Дата сброса энергии (активной, реактивной и полной), в количестве секунд с 01.01.2000
2929	2928	4/3	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты
(1) См. <i>Фа</i>	рмат дать	і, стр. 4	10					

Идентификация

Серийный номер

Серийный номер расцепителя Micrologic состоит максимум из 11 буквенно-цифровых символов и имеет следующий формат: PPYYWWDnnnn.

- РР = код завода
- YY = год изготовления (05...99)
- WW = неделя изготовления (01...53)
- D = день изготовления (1...7)
- nnnn = порядковый номер (0001...9999)

Для чтения серийного номер... расцепителя Micrologic необходим запрос на операцию чтения блока из 6 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
8700	8699	Ч	-	-	STRING	_	A/E	'PP'
8701	8700	Ч	-	-	STRING	0599	A/E	'YY'
8702	8701	Ч	-	_	STRING	0153	A/E	'ww'
8703	8702	Ч	-	-	STRING	17	A/E	'Dn'
8704	8703	Ч	-	_	STRING	0099	A/E	'nn'
8705	8704	Ч	-	_	STRING	0199	A/E	'n' (нулевой символ заканчивает серийный номер)

Версия аппаратного оборудования

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
8709	8708	Ч	1	_	UINT	015	A/E	Версия аппаратного оборудования расцепителя Micrologic

Идентификация Square D

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8716	8715	Ч	_	-	UINT	1514315145	A/E	Идентификация Square D 15143 = для распределительных сетей, тип A 15144 = для распределительных сетей, тип E 15145 = для электродвигателей, тип E

Тип защиты

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8740	8739	Ч	-	_	STRING	5273	A/E	Тип защиты расцепителя Micrologic Для Compact NSX 100/250: '52' = LSI, '62' = LSIG, '72' = LSIV Для Compact NSX 400/630: '53' = LSI, '63' = LSIG, '73' = LSIV

Тип измерения

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8741	8740	Ч	-	_	STRING	AE	A/E	Тип измерения расцепителя Micrologic : 'A' или 'E'

Применение

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
8747	8746	Ч	-	_	UINT	12	A/E	Применение
								1 = распределительные сети
								2 = электродвигатели

Стандарт

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
8748	8747	Ч	-	-	UINT	12	A/E	Стандарт
								1 = UL
								2 = MЭK

Номинальный ток

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
8750	8749	Ч	1	Α	UINT	08000	A/E	Номинальный ток In автоматического выключателя

Количество полюсов

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
8751	8750	Ч	_	_	UINT	01	A/E	0 = 3 полюса 1 = 4 полюса

16 Гц 2/3

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
8752	8751	Ч	_	_	UINT	01	A/E	0 = расцепитель Micrologic не применим в сетях 16 Гц 2/3 1 = расцепитель Micrologic применим в сетях 16 Гц 2/3

Версия микропрограммного обеспечения

Для чтения версии микропрограммного обеспечения расцепителя Micrologic необходим запрос на операцию чтения блока из 5 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
29994 29998	29993 29997	Ч	-	_	STRING	-	A/E	Версия микропрограммного обеспечения расцепителя Micrologic, начинающаяся символом V, имеет следующий формат: VX.Y.Z. X, Y и Z относятся к типу STRING и заключены в диапазоне 1999.

Каталожный номер

Каталожный номер начинается символами LV4 и имеет следующий формат: LV4XYZTW.

Для чтения каталожного номер... расцепителя Micrologic необходим запрос на операцию чтения блока из 4 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
30000	29999	Ч	-	-	STRING	-	A/E	Пример : 'LV'
30001	30000	Ч	-	_	STRING	_	A/E	Пример : '4Х'
30002	30001	Ч	-	_	STRING	_	A/E	Пример : 'YZ'
30003	30002	Ч	-	_	STRING	_	A/E	Пример : 'TW'

Состояние

Состояние аварийнопредупредительных сигналов Регистр состояния аварийно-предупредительных сигналов отслеживает текущее состояние аварийно-предупредительных сигналов.

- Если бит аварийно-предупредительного сигнала установлен на 0, сигнал не активирован.
- Если бит аварийно-предупредительного сигнала установлен в 1, сигнал активирован.

В нижеследующей таблице указаны физические значения для каждого бита регистр... состояния аварийнопредупредительных сигналов:

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Бит	Описание																																		
5704	5703	Ч	-	-	UINT	-	A/E	-	Регистр состояния аварийно-предупредительных сигналов																																		
							A/E	0	Задаваемый пользователем сигнал 201																																		
							A/E	1	Задаваемый пользователем сигнал 202																																		
							A/E	2	Задаваемый пользователем сигнал 203																																		
							A/E	3	Задаваемый пользователем сигнал 204																																		
							A/E	4	Задаваемый пользователем сигнал 205																																		
							A/E	5	Задаваемый пользователем сигнал 206																																		
							A/E	6	Задаваемый пользователем сигнал 207																																		
											A/E	7	Задаваемый пользователем сигнал 208																														
							A/E	8	Задаваемый пользователем сигнал 209																																		
							A/E	9	Задаваемый пользователем сигнал 210																																		
							A/E	10	Предварительный сигнал защиты от перегрузок Ir (PAL Ir)																																		
							A/E	11	Предварительный сигнал дифференциальной защиты I∆n (PAL I∆n)																																		
																																									A/E	12	Предварительный сигнал защиты от замыканий на землю Ig (PAL Ig)
							-	1315	Зарезервировано																																		

Состояние модуля SDx

Регистр состояния модуля SDx отслеживает состояние и достоверность выходов SDx (не более 2 выходов).

- Если бит состояния установлен на 0, выход разомкнут.
- Если бит состояния установлен в 1, выход замкнут.
- Если бит достоверности установлен в 0, состояние выхода не известно.
- Если бит достоверности установлен в 1, состояние выхода известно.

В нижеследующей таблице указаны физические значения для каждого бита регистр... состояния модуля SDx:

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Бит	Описание
8857	8856	Ч	_	_	UINT	-	A/E	-	Регистр состояния модуля SDx
							A/E	0	Состояние выхода 1
							A/E	1	Состояние выхода 2
							_	27	Зарезервировано
							A/E	8	Достоверность выхода 1
							A/E	9	Достоверность выхода 2
							_	1015	Зарезервировано

Состояние аварийного отключения

Регистр состояния аварийного отключения отслеживает состояние аварийного отключения.

- Если бит аварийного отключения установлен в 0, аварийное отключение не активировано.
- Если бит аварийного отключения установлен в 1, аварийное отключение активировано.

В нижеследующей таблице указаны физические значения для каждого бита регистр... состояния аварийного отключения:

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Бит	Описание																																														
10000	9999	Ч	-	_	UINT	_	A/E	_	Регистр состояния аварийного отключения																																														
							A/E	0	Защита от перегрузок Ir																																														
							A/E	1	Селективная токовая отсечка Isd																																														
							A/E	2	Мгновенная токовая отсечка li																																														
							A/E	3	Защита от замыканий на землю Ig																																														
							A/E	4	Дифференциальная защиты (блок Vigi) I∆n																																														
							A/E	5	Встроенная мгновенная токовая отсечка																																														
							A/E	6	STOP (внутренний отказ расцепителя)																																														
							A/E	7	Мгновенная токовая отсечка с дифференциальной защитой (блок Vigi)																																														
							A/E	8	Защита электродвигателя от неполнофазных режимов lunb																																														
							A/E	9	Защита электродвигателя от блокировки ротор ljam																																														
							A/E	10	Защита электродвигателя от недогрузки lund																																														
							A/E	11	Защита электродвигателя от затянутого пуска llong																																														
																																										-			-									A/E	12
							-	1315	Зарезервировано																																														

Хронологический протокол аварийно-предупредительных сигналов

Общее описание

Регистры хронологического протокола аварийно-предупредительных сигналов описывают 10 последних имевших место аварийно-предупредительных сигналов. Формат хронологического протокола аварийно-предупредительных сигналов соответствует серии из 10 записей. Каждая запись состоит из 5 регистров, описывающих один сигнал.

Для чтения п последних записей аварийно-предупредительных сигналов необходим запрос на операцию чтения блока из 5 ? (п) регистров, где 5 — число регистров для каждой записи аварийно-предупредительного сигнала. Чтение начинается в начале операции чтения блока (см. *Чтение хронологического протокола, стр. 44*).

Например, для чтения 3 последних записей аварийно-предупредительных сигналов формата хронологического протокола аварийно-предупредительных сигналов необходим запрос на операцию чтения блока из 5 ? 3 = 15 регистров:

- Первые 5 регистров описывают первую запись аварийно-предупредительного сигнала (самый последний сигнал).
- Следующие 5 регистров описывают вторую запись аварийно-предупредительного сигнала.
- Последние 5 регистров описывают третью запись аварийно-предупредительного сигнала.

Когда регистры хронологического протокола аварийно-предупредительных сигналов не используются, они возвращают 32768 (0х8000).

Регистр	Адрес	Описание
57325736	57315735	Запись аварийно-предупредительного сигнала 1 (самый последний сигнал)
57375741	57365740	Запись аварийно-предупредительного сигнала 2
57425746	57415745	Запись аварийно-предупредительного сигнала 3
57475751	57465750	Запись аварийно-предупредительного сигнала 4
57525756	57515755	Запись аварийно-предупредительного сигнала 5
57575761	57565760	Запись аварийно-предупредительного сигнала 6
57625766	57615765	Запись аварийно-предупредительного сигнала 7
57675771	57665770	Запись аварийно-предупредительного сигнала 8
57725776	57715775	Запись аварийно-предупредительного сигнала 9
57775781	57765780	Запись аварийно-предупредительного сигнала 10 (самый первый сигнал)

Запись аварийнопредупредительного сигнала

Для чтения записи аварийно-предупредительного сигнала необходим запрос на операцию чтения блока из 5 регистров.

Порядок и описание регистров записей аварийно-предупредительных сигналов такие же, как у записи сигнала 1:

Запись ав	арийно-пре	дупред	ците	льного (сигнала 1	(самый посл	едний	сигнал)
Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
5732	5731	Ч	1	-	UINT	065535	A/E	Номер аварийно-предупредительного сигнала (см. следующий пункт)
5733 5734	5732 5733	Ч	1	С	UDINT	_	A/E	Дата аварийно-предупредительного сигнала в секундах с 01.01.2000
5735	5734	Ч	1	_	UINT	_	A/E	Дополнение в мс (всегда = 0) с уточнением даты. См. <i>Формат даты, стр. 40</i>
5736	5735	Ч	1	_	UINT	12	A/E	Тип события MSB = 0 (зарезервировано) Появление события: LSB = 1 Завершение события: LSB = 2

Номер аварийнопредупредительного сигнала

Номер аварийно-предупредительного сигнала	Описание аварийно-предупредительного сигнала
201	Задаваемый пользователем сигнал 201
202	Задаваемый пользователем сигнал 202
203	Задаваемый пользователем сигнал 203
204	Задаваемый пользователем сигнал 204
205	Задаваемый пользователем сигнал 205
206	Задаваемый пользователем сигнал 206
207	Задаваемый пользователем сигнал 207
208	Задаваемый пользователем сигнал 208
209	Задаваемый пользователем сигнал 209
210	Задаваемый пользователем сигнал 210
1013	Предварительный сигнал защиты от перегрузок Ir (PAL Ir)
1014	Предварительный сигнал защиты от замыканий на землю lg (PAL lg)
1015	Предварительный сигнал дифференциальной защиты I∆n (PAL I∆n)

Перечень предопределённых аварийно-предупредительных сигналов, в котором пользователь может выбрать 10 пользовательских сигналов, см. в разделе *Аварийно-предупредительные сигналы, задаваемые пользователем, стр. 71*.

Хронологический протокол аварийных отключений

Общее описание

Регистры хронологического протокола аварийных отключений описывают 17 последних имевших место аварийных отключений. Формат хронологического протокола аварийных отключений соответствует серии из 17 записей. Каждая запись состоит из 7 регистров, описывающих одно аварийное отключение.

Для чтения п последних записей аварийных отключений необходим запрос на операцию чтения блока из 7 ? (n) регистров, где 7 — число регистров для каждой записи аварийных отключений. Чтение начинается в начале операции чтения блока (см. *Чтение хронологического протокола, стр. 44*).

Например, для чтения 4 последних записей аварийных отключений формата хронологического протокола аварийных отключений необходим запрос на операцию чтения блока из 7 ? 4 = 28 регистров:

- Первые 7 регистров описывают первую запись аварийного отключения (самое последнее отключение).
- Следующие 7 регистров описывают вторую запись аварийного отключения.
- Следующие 7 регистров описывают третью запись аварийного отключения.
- Последние 7 регистров описывают четвёртую запись аварийного отключения.

Когда регистры хронологического протокола аварийных отключений не используются, они возвращают 32768 (0х8000).

Регистр	Адрес	Описание
91009106	90999105	Запись аварийного отключения 1 (самое последнее отключение)
91079113	91069112	Запись аварийного отключения 2
91149120	91139119	Запись аварийного отключения 3
91219127	91209126	Запись аварийного отключения 4
91289134	91279133	Запись аварийного отключения 5
91359141	91349140	Запись аварийного отключения 6
91429148	91419147	Запись аварийного отключения 7
91499155	91489154	Запись аварийного отключения 8
91569162	91559161	Запись аварийного отключения 9
91639169	91629168	Запись аварийного отключения 10
91709176	91699175	Запись аварийного отключения 11
91779183	91769182	Запись аварийного отключения 12
91849190	91839189	Запись аварийного отключения 13
91919197	91909196	Запись аварийного отключения 14
91989204	91979203	Запись аварийного отключения 15
92059211	92049210	Запись аварийного отключения 16
92129218	92119217	Запись аварийного отключения 17 (самое первое отключение)

Запись аварийного отключения

Для чтения записи аварийных отключений необходим запрос на операцию чтения блока из 7 регистров.

Порядок и описание регистров записей аварийных отключений такие же, как у записи отключения 1:

Запись ав	Запись аварийного отключения 1 (самое последнее отключение)									
Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание		
9100	9099	Ч	1	-	UINT	065535	A/E	Код аварийного отключения (см. следующий пункт)		
9101 9102	9100 9101	Ч	1	С	UDINT	_	A/E	Дата события (аварийного отключения или квитирования) в количестве секунд с 01.01.2000		
9103	9102	Ч	1	_	UINT	_	A/E	Дополнение в мс с уточнением даты. См. <i>Формат даты, стр. 40</i>		
9104	9103	Ч	1	_	UINT	12	A/E	Тип события MSB = 0 (зарезервировано) Появление события: LSB = 1 Завершение события: LSB = 2		
9105	9104	Ч	1	-	UINT	05	A/E	Повреждённая фаза 0 = отказ (нет повреждённой фазы) 1 = фаза 1 2 = фаза 2 3 = фаза 3 4 = фаза N 5 = фаза 123 (применение с использованием электродвигателя, замыкание на землю, повреждение изоляции)		
9106	9105	Ч	1	Α	UINT	065535	A/E	Ток отключения (пик)		

Код аварийного отключения

Описание аварийного отключения	Защита от перегрузок Ir
1000 (16384)	Селективная токовая отсечка Isd
1001 (16385)	Мгновенная токовая отсечка li
1002 (16386)	Защита от замыканий на землю Ig
1003 (16387)	Дифференциальная защиты (блок Vigi) I∆п
1004 (16388)	Встроенная мгновенная токовая отсечка
1010 (16390)	STOP (внутренний отказ расцепителя)
1011 (16391)	Мгновенная токовая отсечка с дифференциальной защитой (блок Vigi)
1012 (16392)	Защита электродвигателя от неполнофазных режимов
1032 (16640)	Защита электродвигателя от блокировки ротор
1033 (16641)	Защита электродвигателя от недогрузки
1034 (16642)	Защита электродвигателя от затянутого пуска
1035 (16643)	Защита от рефлексного отключения
1036 (16393)	Селективная токовая отсечка Isd

Хронологический протокол операций техобслуживания

Общее описание

Регистры хронологического протокола операций техобслуживания описывают 10 последних имевших место операций техобслуживания. Формат хронологического протокола операций техобслуживания соответствует серии из 10 записей. Каждая запись состоит из 5 регистров, описывающих одну операцию техобслуживания.

Для чтения п последних записей операций техобслуживания необходим запрос на операцию чтения блока из 5 ? (n) регистров, где 5 — число регистров для каждой записи операции техобслуживания. Чтение начинается в начале операции чтения блока (см. *Чтение хронологического протокола, стр. 44*).

Например, для чтения 2 последних записей операций техобслуживания формата хронологического протокола операций техобслуживания необходим запрос на операцию чтения блока из 5 x 2 = 10 регистров:

- Первые 5 регистров описывают первую запись операции техобслуживания (самая последняя операция).
- Последние 5 регистров описывают вторую запись операции техобслуживания.

Когда регистры хронологического протокола операций техобслуживания не используются, они возвращают 32768 (0х8000).

Регистр	Адрес	Описание
2950029504	2949929503	Запись операции техобслуживания 1 (самая последняя операция)
2950529509	2950429508	Запись операции техобслуживания 2
2951029514	2950929513	Запись операции техобслуживания 3
2951529519	2951429518	Запись операции техобслуживания 4
2952029524	2951929523	Запись операции техобслуживания 5
2952529529	2952429528	Запись операции техобслуживания 6
2953029534	2952929533	Запись операции техобслуживания 7
2953529539	2953429538	Запись операции техобслуживания 8
2954029544	2953929543	Запись операции техобслуживания 9
2954529549	2954429548	Запись операции техобслуживания 10 (самая первая операция)

Запись операции техобслуживания

Для чтения записи операции техобслуживания необходим запрос на операцию чтения блока из 5 регистров.

Порядок и описание регистров записей операций техобслуживания такие же, как у записи операции 1:

Запись оп	Запись операции техобслуживания 1 (самая последняя операция)										
Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание			
29500	29499	Ч	1	-	UINT	065535	A/E	Код операции техобслуживания (см. следующий пункт)			
29501 29502	29500 29501	Ч	1	С	UDINT	_	A/E	Дата операции техобслуживания в секундах с 01.01.2000			
29503	29502	Ч	1	-	UINT	-	A/E	Дополнение в мс (всегда = 0) с уточнением даты. См. <i>Формат даты, стр. 40</i>			
29504	29503	-	-	-	-	_	-	Зарезервировано			

Код операции техобслуживания

Код операции техобслуживания	Описание операции техобслуживания
2000	Испытание при помощи кнопки Push to trip (с модулем техобслуживания)
2001	Запрет замыкания на землю
2003	Запуск цифрового испытания прогрузкой
2004	Завершение цифрового испытания прогрузкой
2005	Испытание на замыкание на землю
2006	Испытание на повреждение изоляции (блок Vigi)
2007	Запуск испытания аварийно-предупредительной сигнализации
2008	Завершение испытания аварийно-предупредительной сигнализации
2009	Активация защиты от перегрузок
2010	Дезактивация защиты от перегрузок
2011	Активация селективной токовой отсечки
2012	Дезактивация селективной токовой отсечки
2013	Активация мгновенной токовой отсечки
2014	Дезактивация мгновенной токовой отсечки
2015	Активация встроенной мгновенной токовой отсечки
2016	Дезактивация встроенной мгновенной токовой отсечки
2017	Активация защита от неполнофазных режимов
2018	Дезактивация защита от неполнофазных режимов
2019	Активация защиты от замыканий на землю
2020	Дезактивация защиты от замыканий на землю
2021	Активация дифференциальной защиты (блок Vigi)
2022	Дезактивация дифференциальной защиты (блок Vigi)
2023	Активация тепловой памяти
2024	Дезактивация тепловой памяти
2025	Активация соединения с модулем техобслуживания
2026	Дезактивация соединения с модулем техобслуживания
2027	Вращение поворотного колеса 1
2028	Вращение поворотного колеса 2
2029	Переключатель блокировки в «открытом» положении
2030	Переключатель блокировки в «запертом» положении
2031	Испытание функции логической селективности ZSI
2033	Перезапуск программного обеспечения
2034	Сброс минимальных/максимальных значений тока
2035	Сброс минимальных/максимальных значений напряжения
2036	Сброс минимальных/максимальных значений мощности
2037	Сброс минимальных/максимальных значений коэффициента мощности
2038	Сброс минимальных/максимальных значений общего гармонического искажения
2039	Сброс максимального значения потребления тока
2040	Сброс максимального значения потребления мощности (активной, реактивной и полной)
2041	Сброс минимальных/максимальных значений частоты
2042	Сброс минимальных/максимальных значений тепловой памяти
2043	Сброс измерений энергии
2044	Сброс счётчика энергии

Предварительные аварийно-предупредительные сигналы

Общее описание

Утилита RSU позволяет сконфигурировать следующие три предварительных аварийно-предупредительных сигнала:

- предварительный сигнал защиты от перегрузок (PAL Ir);
- предварительный сигнал защиты от замыканий на землю (PAL Ig);
- предварительный сигнал дифференциальной защиты (блок Vigi) (PAL I∆n).

Для получения более подробной информации о конфигурировании предварительных аварийно-предупредительных сигналов обращайтесь к помощи «он лайн» по утилите RSU.

Каждый сигнал имеет соответствующий код:

- PAL Ir = 1013
- PAL Ig = 1014
- PAL I∆n = 1015

Каждый аварийно-предупредительный сигнал имеет уровень приоритета, определяющий отображение сигнала на щитовом индикаторе FDM121:

- нет приоритета = N/A (не назначено);
- низкий приоритет = 1. Сигнал не отображается на щитовом индикаторе FDM121.
- средний приоритет = 2. Светодиод щитового индикатор... FDM121 горит постоянным светом.
- высокий приоритет = 3. Светодиод щитового индикатор... FDM121 мигает, «всплывающее» окно информирует пользователя об активации сигнала.

Для получения более подробной информации о приоритете аварийно-предупредительных сигналов и их отображении на щитовом индикаторе FDM121 см. *Руководство по эксплуатации расцепителей Micrologic 5 и 6.*

Регистры предварительных аварийно-предупредительных сигналов описывают настройки этих сигналов:

Регистр	Адрес	Описание
66506659	66496658	Предварительный сигнал защиты от перегрузок (PAL Ir)
66606669	66596668	Предварительный сигнал защиты от замыканий на землю (PAL lg)
66706679	66696678	Предварительный сигнал дифференциальной защиты (блок Vigi) (PAL I∆n)

Предварительный сигнал защиты от перегрузок (PAL Ir)

Для чтения параметров предварительного аварийно-предупредительного сигнала защиты от перегрузок необходим запрос на операцию чтения блока из 10 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
6650	6649	Ч	-	-	UINT	-	A/E	Старшие значащие биты (MSB) показывают состояние сигнала: 0 = Оп (активировано), 1 = Off (дезактивировано). Значение по умолчанию: 0 (Оп). Младшие значащие биты (LSB) показывают приоритет сигнала: N/A, 1, 2 или 3. Значение по умолчанию: 2 (средний приоритет).
6651	6650	-	-	_	-	_	-	Зарезервировано
6652	6651	Ч	1	%	INT	(1)	A/E	% порога срабатывания Ir. Значение по умолчанию: 90
6653	6652	-	-	_	-	_	-	Зарезервировано
6654	6653	Ч	1	С	UINT	1	A/E	Выдержка времени на срабатывание (установлено на 1 с)
6655	6654	Ч	1	%	INT	(1)	A/E	% порога выключения Ir. Значение по умолчанию: 85
6656	6655	-	-	_	_	_	-	Зарезервировано
6657	6656	Ч	1	С	UINT	1	A/E	Выдержка времени на выключение (установлено на 1 с)
6658	6657	-	-	_	-	-	-	Зарезервировано
6659	6658	-	-	-	-	_	-	Зарезервировано

⁽¹⁾ Для применения в распределительных сетях, диапазон составляет 40...100. Для применения с электродвигателем, диапазон составляет 10...95.

Предварительный сигнал защиты от замыканий на землю (PAL Ig)

Для чтения параметров предварительного аварийно-предупредительного сигнала защиты от замыканий на землю необходим запрос на операцию чтения блока из 10 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
6660	6659	Ч	_	-	UINT	_	A/E	Старшие значащие биты (MSB) показывают состояние сигнала: 0 = On (активировано), 1 = Off (дезактивировано). Значение по умолчанию: 0 (On). Младшие значащие биты (LSB) показывают приоритет сигнала: N/A, 1, 2 или 3. Значение по умолчанию: 2 (средний приоритет).
6661	6660	-	-	_	_	_	_	Зарезервировано
6662	6661	Ч	1	%	INT	40100	A/E	% порога срабатывания lg. Значение по умолчанию: 90
6663	6662	-	_	_	-	_	-	Зарезервировано
6664	6663	Ч	1	С	UINT	1	A/E	Выдержка времени на срабатывание (установлено на 1 с)
6665	6654	Ч	1	%	INT	40100	A/E	% порога выключения Ig. Значение по умолчанию: 85
6666	6665	-	-	-	-	_	_	Зарезервировано
6667	6666	Ч	1	С	UINT	1	A/E	Выдержка времени на выключение (установлено на 1 с)
6668	6667	-	-	-	-	_	-	Зарезервировано
6669	6668	-	-	_	-	-	-	Зарезервировано

Предварительный сигнал дифференциальной защиты (блок Vigi) (PAL I∆n)

Для чтения параметров предварительного аварийно-предупредительного сигнала дифференциальной защиты (блок Vigi) необходим запрос на операцию чтения блока из 10 регистров (см. *Чтение хронологического протокола*, *стр.* 44).

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
6670	6669	Ч	_	-	UINT	-	A/E	Старшие значащие биты (MSB) показывают состояние сигнала: 0 = Оп (активировано), 1 = Off (дезактивировано). Значение по умолчанию: 0 (Оп). Младшие значащие биты (LSB) показывают приоритет сигнала: N/A, 1, 2 или 3. Значение по умолчанию: 2 (средний приоритет).
6671	6670	-	-	-	-	-	-	Зарезервировано
6672	6671	Ч	1	%	INT	40100	A/E	% порога срабатывания IDn. Значение по умолчанию: 90
6673	6672	-	-	-	_	_	-	Зарезервировано
6674	6673	Ч	1	С	UINT	1	A/E	Выдержка времени на срабатывание (установлено на 1 с)
6675	6674	Ч	1	%	INT	40100	A/E	% порога выключения І∆п. Значение по умолчанию: 85
6676	6675	-	-	_	-	-	-	Зарезервировано
6677	6676	Ч	1	С	UINT	1	A/E	Выдержка времени на выключение (установлено на 1 с)
6678	6677	-	-	_	-	_	-	Зарезервировано
6679	6678	_	-	_	-	_	-	Зарезервировано

Аварийно-предупредительные сигналы, задаваемые пользователем

Общее описание

Утилита RSU позволяет сконфигурировать 10 пользовательских аварийно-предупредительных сигнала, которые можно выбрать в перечне из 150 предопределённых сигналов.

Для получения более подробной информации о конфигурировании пользовательских аварийно-предупредительных сигналов обращайтесь к помощи «он лайн» по утилите RSU.

Каждый задаваемый пользователем аварийно-предупредительный сигнал имеет свой номер пользовательского сигнала (201...210) и соответствующий код (см. следующий пункт).

Каждый аварийно-предупредительный сигнал имеет уровень приоритета, определяющий отображение сигнала на щитовом индикаторе FDM121:

- нет приоритета = N/A (не назначено);
- низкий приоритет = 1. Сигнал не отображается на щитовом индикаторе FDM121.
- средний приоритет = 2. Светодиод щитового индикатор... FDM121 горит постоянным светом.
- высокий приоритет = 3. Светодиод щитового индикатор... FDM121 мигает, «всплывающее» окно информирует пользователя об активации сигнала.

Для получения более подробной информации о приоритете аварийно-предупредительных сигналов и их отображении на щитовом индикаторе FDM121 см. *Руководство по эксплуатации расцепителей Micrologic 5 и 6.*

Настройки 10 задаваемых пользователем аварийно-предупредительных сигналов находятся в регистрах пользовательских сигналов:

Регистр	Адрес	Описание
67706781	67696780	Задаваемый пользователем сигнал 201
67826793	67816792	Задаваемый пользователем сигнал 202
67946805	67936804	Задаваемый пользователем сигнал 203
68066817	68056816	Задаваемый пользователем сигнал 204
68186829	68176828	Задаваемый пользователем сигнал 205
68306841	68296840	Задаваемый пользователем сигнал 206
68426853	68416852	Задаваемый пользователем сигнал 207
68546865	68536864	Задаваемый пользователем сигнал 208
68666877	68656876	Задаваемый пользователем сигнал 209
68786889	68776888	Задаваемый пользователем сигнал 210

Запись задаваемых пользователем аварийнопредупредительных сигналов Для чтения записи пользовательских аварийно-предупредительных сигналов необходим запрос на операцию чтения блока из 12 регистров (см. *Чтение хронологического протокола, стр. 44*).

Порядок и описание регистров записей пользовательских аварийно-предупредительных сигналов такие же, как у записи сигнала 1:

Задаваем	Задаваемый пользователем аварийно-предупредительный сигнал 201										
Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание			
6770	6769	Ч	-	-	UINT	-	A/E	Старшие значащие биты (MSB) показывают состояние сигнала: 0 = On (активировано), 1 = Off (дезактивировано). Значение по умолчанию: 1 (Off). Младшие значащие биты (LSB) показывают приоритет сигнала: N/A, 1, 2 или 3. Значение по умолчанию: N/A (нет приоритета).			
6771	6770	Ч	-	_	UINT	_	A/E	Идентификатор измерения (1)			
6772	6771	-	-	_	-	-	-	Зарезервировано			
6773	6772	Ч	1	(2)	INT	-32767 +32767	A/E	Порог срабатывания. Значение по умолчанию: 0			
6774	6773	-	-	-	-	_	-	Зарезервировано			
6775	6774	Ч	1	С	UINT	03000	A/E	Выдержка времени на срабатывание. Значение по умолчанию: 0			
6776	6775	Ч	1	(2)	INT	-32767 +32767	A/E	Порог выключения. Значение по умолчанию: 0			
6777	6776	-	-	-	-	_	-	Зарезервировано			
6778	6777	Ч	1	С	INT	03000	A/E	Выдержка времени на выключение. Значение по умолчанию: 0			
6779	6778	Ч	-	-	UINT	03	A/E	Оператор: $0: \ge$, $1: \le$, $2: =$, $3: I \ge I$			
6780	6779	Ч	-	-	UINT	11919	-	Код аварийно-предупредительного сигнала (см. следующий пункт)			
6781	6780	-	-	_	-	_	-	Зарезервировано			

⁽¹⁾ Значение идентификатор... измерения представляет собой номер регистр... измерения. Например, идентификатор измерения тока фазы 1 (I1) равен 1016.

⁽²⁾ Единица измерения порога зависит от идентификатор... измерения. Например, если идентификатор измерения – I1, единицей измерения будет А.

Коды предопределённых аварийнопредупредительных сигналов Нижеследующая таблица содержит перечень предопределённых аварийно-предупредительных сигналов и соответствующих кодов, в котором пользователь может выбрать 10 пользовательских сигналов и сконфигурировать их с помощью утилиты RSU:

Код сигнала	Описание сигнала
1	Максимальный ток I 1
2	Максимальный ток I 2
3	Максимальный ток I 3
4	Максимальный ток IN
5	Сигнал замыкания на землю
6	Минимальный ток I 1
7	Минимальный ток I 2
8	Минимальный ток I 3
9	Максимальный небаланс I 1
10	Максимальный небаланс I 2
11	Максимальный небаланс I 3
12	Максимальное напряжение V1N
13	Максимальное напряжение V2N
14	Максимальное напряжение V3N
15	Минимальное напряжение V1N
16	Минимальное напряжение V2N
17	Минимальное напряжение V3N
18	Максимальный небаланс V1N
19	Максимальный небаланс V2N
20	Максимальный небаланс V3N
21	Максимальная суммарная мощность кВА
22	Максимальная прямая мощность кВт
23	Максимальная обратная мощность кВт
24	Максимальная прямая мощность квар
25	Максимальная обратная мощность квар
26	Минимальная суммарная мощность кВА
27	Минимальная прямая мощность кВт
29	Минимальная прямая мощность квар
31	Опережение РF
33	Опережение/отставание РF (МЭК)
34	Отставание РF
35	Максимальное THD I 1
36	Максимальное ТНD I 2
37	Максимальное ТНD 13
38	Максимальное THD V1 N
39	Максимальное THD V2N
40	Максимальное THD V3N
41	Максимальное THD U12
42	Максимальное THD U23
43	Максимальное THD U31
54	Сигнал дифференциальной защиты (блок Vigi)
55	Максимальный ток lavg
56	Максимальный ток I MAX (I1, I2, I3 или IN)
57	Минимальный ток IN
60	Минимальный ток lavg
61	Максимальный потребляемый ток I 1
62	Максимальный потребляемый ток I 2
63	Максимальный потребляемый ток I 3
	1

Код сигнала	Описание сигнала
64	Максимальный потребляемый ток IN
65	Минимальный ток I MIN (I1, I2 или I3)
66	Минимальный потребляемый ток I1
67	Минимальный потребляемый ток I2
68	Минимальный потребляемый ток I3
69	Минимальный потребляемый ток IN
70	Максимальный небаланс I MAX (I1, I2 или I3)
71	Максимальное напряжение U12
72	Максимальное напряжение U23
73	Максимальное напряжение U31
75	Максимальное напряжение Vavg
76	Минимальное напряжение U12
77	Минимальное напряжение U23
78	Минимальное напряжение U31
79	Максимальное напряжение U MAX
80	Минимальное напряжение Vavg
81	Минимальное напряжение U MIN
82	Макс. небаланс V MAX (V1N)
86	Максимальный небаланс U12
87	Максимальный небаланс U23
88	Максимальный небаланс U31
89	Максимальный небаланс U MAX
90	Порядок чередования фаз
92	Минимальная частота
93	Максимальная частота
121	Опережение соѕφ (IEEE)
123	Опережение/отставание соѕφ (МЭК)
124	Отставание $\cos \phi$ (IEEE)
125	Максимальная тепловая память электродвигателя
126	Минимальная тепловая память электродвигателя
141	Максимальный ток I1 пик потребления
142	Максимальный ток 12 пик потребления
143	Максимальный ток ІЗ пик потребления
144	Максимальный ток IN пик потребления
145	Опережение
146	Отставание
147	Квадрант 1
148	Квадрант 2
149	Квадрант 3
150	Квадрант 4

Параметры защиты

Параметры защиты от перегрузок

Для чтения параметров защиты от перегрузок необходим запрос на операцию чтения блока из 10 регистров (см. *Чтение хронологического протокола, стр. 44*).

Команда защиты от перегрузок (код команды 45192) конфигурирует содержимое регистров защиты от перегрузок.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8754	8753	Ч	-	-	UINT	02	A/E	Состояние: 0 = Off (дезактивировано), 1 = On (активировано), 2 = Inhibit (запрет)
8755	8754	_	-	_	_	-	-	Зарезервировано
8756	8755	4/3	1	Α	UINT	-	A/E	Уставка тока срабатывания Ir. Диапазон Ir зависит от номинального тока In.
8757	8756	-	-	-	_	_	_	Зарезервировано
8758	8757	4/3	1	мс	UINT	500 16000	A/E	Уставка времени tr (применение в распределительных сетях) tr = 500, 1000, 2000, 4000, 8000, 16000 мс
8759	8758	4/3	1	мс	UINT	530	Е	Класс электродвигателя (только для применения с электродвигателем) Возможные значения = 5, 10, 20, 30 мс
8760	8759	Ч	-	-	_	-	_	Зарезервировано
8761	8760	4/3	_	-	UINT	12	Е	Вентилятор охлаждения (только для применения с электродвигателем) 1 = auto (самовентиляция), 2 = motor (принудительная вентиляция)
8762	8761	-	-	-	-	-	-	Зарезервировано
8763	8762	-	-	-	-	_	-	Зарезервировано

Параметры селективной токовой отсечки

Для чтения параметров селективной токовой отсечки необходим запрос на операцию чтения блока из 10 регистров (см. *Чтение хронологического протокола, стр. 44*).

Команда селективной токовой отсечки (код команды 45193) конфигурирует содержимое регистров селективной токовой отсечки.

Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8763	Ч	-	_	UINT	02	A/E	Состояние: 0 = Off (дезактивировано), 1 = On (активировано), 2 = Inhibit (запрет)
8764	4/3	-	_	UINT	01	A/E	Тип защиты: $0 = l^2t$ On, $1 = l^2t$ Off. Для применения с электродвигателем, $tsd = 30$ мс и l^2t на Off (фиксированные значения).
8765	4/3	10	_	UINT	(1)	A/E	Коэффициент Isd, регулируемый с шагом 5.
8766	Ч	1	A	UINT	_	A/E	Уставка тока срабатывания lsd = (Ir) x (коэффициент lsd) / 10
8767	4/3	1	МС	UINT	0400	A/E	Уставка времени tsd tsd = 0, 30, 100, 200, 300, 400 мс Если tsd = 0 мс, I ² t должно быть на Off.
8768 8769	-	-	-	-	-	-	Зарезервировано
8770	_	-	-	-	-	-	Зарезервировано
8771	-	-	-	-	-	-	Зарезервировано
8772	_	-	-	-	-	-	Зарезервировано
	8763 8764 8765 8766 8767 8768 8769 8770	8763	8763	8763	8763 4 - - UINT 8764 4/3 - - UINT 8765 4/3 10 - UINT 8766 4 1 A UINT 8767 4/3 1 MC UINT 8768 8769 - - - - 8770 - - - - 8771 - - - - 8771 - - - -	8763 4 - - UINT 02 8764 4/3 - - UINT 01 8765 4/3 10 - UINT (1) 8766 4 1 A UINT - 8767 4/3 1 MC UINT 0400 8768 8769 - - - - - 8770 - - - - - 8771 - - - - -	8763 4 - - UINT 02 A/E 8764 4/3 - - UINT 01 A/E 8765 4/3 10 - UINT (1) A/E 8766 4 1 A UINT - A/E 8767 4/3 1 MC UINT 0400 A/E 8768 8769 - - - - - - - 8770 - - - - - - - 8771 - - - - - - -

(1) Для применения в распределительных сетях, диапазон составляет 15...100. Для применения с электродвигателем, диапазон составляет 50...130.

Параметры мгновенной токовой отсечки

Для чтения параметров мгновенной токовой отсечки необходим запрос на операцию чтения блока из 10 регистров (см. *Чтение хронологического протокола, стр. 44*).

Команда мгновенной токовой отсечки (код команды 45194) конфигурирует содержимое регистров мгновенной токовой отсечки.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8774	8773	Ч	-	-	UINT	02	A/E	Состояние: 0 = Off (дезактивировано), 1 = On (активировано), 2 = Inhibit (запрет)
8775	8774	-	-	-	-	_	-	Зарезервировано
8776	8775	4/3	10	_	UINT	(1)	A/E	Коэффициент li, регулируемый с шагом 5
8777	8766	Ч	1	Α	UINT	_	A/E	Уставка тока срабатывания li = (ln) x (коэффициент li) / 10
8778	8777	-	-	-	-	_	-	Зарезервировано
8779 8780	8778 8779	-	-	-	-	_	-	Зарезервировано
8781	8780	-	-	-	-	-	-	Зарезервировано
8782	8781	-	-	_	-	-	-	Зарезервировано
8783	8782	-	-	_	-	_	-	Зарезервировано

- (1) Диапазон коэффициента li зависит от типоразмер... автоматического выключателя:
- Для Compact NSX 100/160, диапазон составляет 15...150.
- Для Compact NSX 250/400, диапазон составляет 15...120.
- Для Compact NSX 630, диапазон составляет 15...110.

Параметры защиты от замыканий на землю

Для чтения параметров защиты от замыканий на землю необходим запрос на операцию чтения блока из 10 регистров (см. *Чтение хронологического протокола, стр. 44*).

Команда защиты от замыканий на землю (код команды 45195) конфигурирует содержимое регистров защиты от замыканий на землю.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8784	8783	Ч	-	-	UINT	01	A/E	Состояние: 0 = Off, 1 = On
8785	8784	4/3	_	-	UINT	01	A/E	Тип защиты: $0=l^2t$ On, $1=l^2t$ Off Для применения с электродвигателем, $tg=0$ мс и l^2t на Off (фиксированные значения).
8786	8785	4/3	100	-	UINT	_	A/E	Коэффициент Ig, регулируемый с шагом 5
8787	8786	Ч	1	A	UINT	-	A/E	Уставка тока срабатывания $lg = (ln) x (коэффициент lg) / 100$ Если защита от замыканий на землю установлена на Off, уставка $lg = ln$
8788	8787	4/3	1	мс	UINT	0400	A/E	Уставка времени tg tg = 0, 100, 200, 300, 400 мс. Если tg = 0 мс, 1^2 t должно быть на Off
8789 8790	8788 8789	-	-	-	-	_	-	Зарезервировано
8791	8790	-	-	-	-	_	-	Зарезервировано
8792	8791	-	-	-	-	_	-	Зарезервировано
8793	8792	-	-	-	_	_	-	Зарезервировано

Параметры дифференциальной защиты (блок Vigi) Для чтения параметров дифференциальной защиты (блок Vigi) необходим запрос на операцию чтения блока из 10 регистров (см. *Чтение хронологического протокола, стр. 44*).

Команда дифференциальной защиты (блок Vigi) (код команды 45196) конфигурирует содержимое регистров дифференциальной защиты (блок Vigi).

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8794	8793	Ч	_	_	UINT	02	A/E	Состояние: 0 = Off (дезактивировано), 1 = On (активировано), 2 = Inhibit (запрет)
8795	8794	-	-	-	_	_	_	Зарезервировано
8796	8795	4/3	1	мА	UINT	-	A/E	Ток утечки на землю I∆n. Диапазон I∆n зависит от номинального тока In.
8797	8796	-	-	-	_	_	-	Зарезервировано
8798	8797	4/3	1	мс	UINT	01000	A/E	Уставка времени t Δ n t Δ n = 0, 60, 150, 500, 1 000 мс Если I Δ n = 0,03 мA, t Δ n = 0 мс.
8799 8800	8798 8799	-	-	-	_	_	-	Зарезервировано
8801	8800	-	-	-	_	_	_	Зарезервировано
8802	8801	-	-	-	_	_	-	Зарезервировано
8803	8802	-	-	_	-	_	-	Зарезервировано

Параметры защиты от блокировки ротор...

Для чтения параметров защиты от блокировки ротор... необходим запрос на операцию чтения блока из 4 регистров (см. *Чтение хронологического протокола, стр. 44*).

Защита от блокировки ротор... реализуется только для применения с электродвигателем. Команда защиты от блокировки ротор... (код команды 45448) конфигурирует содержимое регистров защиты от блокировки ротор....

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
8900	8899	4/3	-	_	UINT	01	Е	Состояние: 0 = Off, 1 = On
8901	8900	4/3	10	_	UINT	1080	Е	Коэффициент Ijam, регулируемый с шагом 1.
8902	8901	Ч	1	Α	UINT	_	Е	Уставка тока срабатывания = (Ir) x (коэффициент Ijam) / 10
8903	8902	4/3	1	С	UINT	130	Е	Уставка времени tjam

Параметры защиты от неполнофазных режимов Для чтения параметров защиты от неполнофазных режимов необходим запрос на операцию чтения блока из 4 регистров (см. *Чтение хронологического протокола, стр. 44*).

Защита от неполнофазных режимов реализуется только для применения с электродвигателем. Команда защиты от неполнофазных режимов (код команды 45450) конфигурирует содержимое регистров защиты от неполнофазных режимов.

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
8904	8903	Ч	-	_	UINT	02	E	Состояние: 0 = Off, 1 = On, 2 = Inhibit (inhibition)
8905	8904	4/3	1	%	UINT	1040	E	Коэффициент lunbal
8906	8905	4/3	1	С	UINT	110	Е	Уставка времени tunbal
8907	8906	Ч	_	_	_	_	-	Зарезервировано

Параметры защиты от недогрузки

Для чтения параметров защиты от недогрузки необходим запрос на операцию чтения блока из 4 регистров (см. *Чтение* хронологического протокола, стр. 44).

Защита от недогрузки реализуется только для применения с электродвигателем. Команда защиты от недогрузки (код команды 45449) конфигурирует содержимое регистров защиты от недогрузки.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8908	8907	4/3	-	_	UINT	01	E	Состояние: 0 = Off (дезактивировано), 1 = On (активировано)
8909	8908	4/3	100	-	UINT	3090	Е	Коэффициент lunderload, регулируемый с шагом 1
8910	8909	Ч	1	Α	UINT	_	E	Уставка тока срабатывания lunderload = (Ir) x (lunderload) / 100
8911	8910	4/3	1	С	UINT	1200	E	Уставка времени tunderload

Параметры защиты от затянутого пуска

Для чтения параметров защиты от затянутого пуска необходим запрос на операцию чтения блока из 4 регистров (см. Чтение хронологического протокола, стр. 44).

Защита от затянутого пуска реализуется только для применения с электродвигателем. Команда защиты от затянутого пуска (код команды 45451) конфигурирует содержимое регистров защиты от затянутого пуска.

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
8912	8911	4/3	_	_	UINT	01	Е	Состояние: 0 = Off (дезактивировано), 1 = On (активировано)
8913	8912	4/3	10	-	UINT	1080	Е	Коэффициент llongstart, регулируемый с шагом 1.
8914	8913	Ч	1	Α	UINT	-	Е	Уставка тока срабатывания llongstart = (Ir) x (коэффициент llongstart) / 10
8915	8914	4/3	1	С	UINT	1200	Е	Уставка времени tlongstart

Параметры защиты нейтрали

Защита нейтрали реализуется только в случае, если тип системы - 30 или 41 в регистре 3314. См. Тип системы, стр. 80. Для чтения параметров защиты нейтрали необходим запрос на операцию чтения блока из 4 регистров (см. *Чтение* хронологического протокола, стр. 44).

Команда защиты нейтрали (код команды 45197) конфигурирует содержимое регистров защиты нейтрали.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8916	8915	Ч	-	-	UINT	0 2	A/E	Состояние: 0 = Off (дезактивировано), 1 = On (активировано), 2 = Inhibit (запрет) (1)
8917	8916	4/3	_	-	UINT	03	A/E	Уставка коэффициента нейтрали 0 = Off 1 = 0.5 2 = 1.0 3 = OSN (OverSized Neutral = нейтраль, защищённая с завышенной уставкой)
8918	8917	Ч	1	Α	UINT	032766	-	Уставка тока Ir
8919	8918	Ч	1	Α	UINT	032766	-	Уставка тока Isd

(1) Для автоматических выключателей 40 А МЭК и 60 А UL, пользователь не может настроить уставку коэффициента нейтрали на 0,5.

Параметр запрета тепловой памяти

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
8930	8929	Ч	-	-	UINT	1 2	A/E	Состояние: 1 = On (активировано), 2 = Inhibit (запрет)

Конфигурирование модуля SDx

Выход 1

Для чтения параметров выхода 1 необходим запрос на операцию чтения блока из 3 регистров (см. *Чтение хронологического протокола, стр. 44*).

Пользователь может проверить состояние и достоверность выхода 1 в регистре 8857 (см. Состояние модуля SDx, стр. 61).

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
9801	9800	Ч	1	-	UINT	04	A/E	Режимы работы выхода 0 = обычный режим 1 = режим с самоподхватом 2 = режим с выдержкой времени 3 = режим с удержанием во включённом состоянии 4 = режим с удержанием в отключённом состоянии
9802	9801	Ч	1	С	UINT	1360	A/E	Выдержка времени (если режим работы выхода настроен на 2). Значение по умолчанию: 1 с.
9803	9802	Ч	1	-	UINT	065535	ĄÆ	Идентификатор аварийно-предупредительного сигнала (201210, 1013, 1014, 1015). Если аварийно-предупредительного сигнала нет, идентификатор настроен на 0.

Выход 2

Для чтения параметров выхода 2 необходим запрос на операцию чтения блока из 3 регистров (см. *Чтение хронологического протокола, стр. 44*).

Пользователь может проверить состояние и достоверность выхода 2 в регистре 8857 (см. Состояние модуля SDx, стр. 61).

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
9808	9807	Ч	1	-	UINT	04	A/E	Режимы работы выхода 0 = обычный режим 1 = режим с самоподхватом 2 = режим с выдержкой времени 3 = режим с удержанием во включённом состоянии 4 = режим с удержанием в отключённом состоянии
9809	9808	Ч	1	С	UINT	1360	A/E	Выдержка времени (если режим работы выхода настроен на 2). Значение по умолчанию: 1 с.
9810	9809	Ч	1	_	UINT	065535	A/E	Идентификатор аварийно-предупредительного сигнала (201210, 1013, 1014, 1015). Если аварийно-предупредительного сигнала нет, идентификатор настроен на 0.

Параметры измерения

Тип системы

Команда настройки наличия дополнительной функции ENVT (External Neutral Voltage Tap = внешний вывод напряжения нейтрали) (код команды = 46472) конфигурирует содержимое регистр... типа системы.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
3314	3313	4/3	_	-	UINT	3041	A/E	Тип системы

Определение типа системы

Если	Тогда	Результат
тип системы — трёхполюсный автоматический выключатель с внешним трансформатором тока нейтрали и без функции ENVT	тип системы = 30	 Доступны измерения линейных напряжений. Не доступны измерения фазных напряжений. Доступно измерение тока нейтрали. Метод трёх ваттметров не возможен.
тип системы — трёхполюсный автоматический выключатель без внешнего трансформатор тока нейтрали и без функции ENVT	тип системы = 31	 Доступны измерения линейных напряжений. Не доступны измерения фазных напряжений. Не доступно измерение тока нейтрали. Метод трёх ваттметров не возможен.
тип системы — трёхполюсный автоматический выключатель без внешнего трансформатор тока нейтрали и с функцией ENVT	тип системы = 40	 Доступны измерения линейных напряжений. Доступны измерения фазных напряжений. Не доступно измерение тока нейтрали. Метод трёх ваттметров возможен.
тип системы — трёхполюсный автоматический выключатель с внешним трансформатором тока нейтрали и с функцией ENVT, или если тип системы — четырёхполюсный автоматический выключатель	тип системы = 41	 Доступны измерения линейных напряжений. Доступны измерения фазных напряжений. Доступно измерение тока нейтрали. Метод трёх ваттметров возможен.

Квадранты

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
2242	2241	Ч	-	-	UINT	14	Е	Квадранты
2243	2242	Ч	_	_	UINT	01	Е	0 = опережение
								1 = отставание

Знак мощности

Команда знака мощности (код команды = 47240) конфигурирует содержимое регистр... знака мощности.

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
3316	3315	4/3	_	-	UINT	01	E	Знак мощности 0 = активная мощность идёт сверху вниз (значение по умолчанию). 1 = активная мощность идёт снизу вверх.

Знак коэффициента мощности

Команда конфигурирования знака коэффициента мощности (код команды = 47241) конфигурирует содержимое регистр... знака коэффициента мощности.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
3318	3317	4/3	_	_	UINT	02	Е	Правило знака, применяемой к коэффициенту мощности и коэффициенту мощности основной гармоники (соs ϕ) 0 = правило МЭК 2 = правило IEEE (по умолчанию)

Метод суммирования энергии

Команда конфигурирования метода суммирования энергии (код команды = 47242) конфигурирует содержимое регистр... метода суммирования энергии.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
3324	3323	4/3	-	-	UINT	01	Е	Метод суммирования энергии 0 = абсолютный метод (по умолчанию) Ep = EpIn + EpOut Eq = Eqin + EqOut 1 = относительный метод Ep = EpIn - EpOut Eq = EqIn - EqOut

Интервал потребления

Команда конфигурирования потребления тока (код команды 47243) конфигурирует содержимое регистр... 3352.

Команда конфигурирования потребления мощности (код команды 47244) конфигурирует содержимое регистров 3354 и 3355

Для получения более подробной информации о методе расчёта потребления см. *Руководство по эксплуатации* расцепителей *Micrologic 5 и 6.*

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
3352	3351	4/3	-	мин	UINT	560	Е	Длительность временного интервала (окна) расчёта потребления тока, регулируемая с шагом 1 мин. Значение по умолчанию: 15 мин.
3354	3353	4/3	-	-	UINT	05	Е	Метод расчёта потребления мощности (тип временного интервала) 0 = скользящий интервал 2 = постоянный интервал 5 = интервал, синхронизируемый по системе передачи данных Значение по умолчанию: 0 (скользящий интервал).
3355	3354	4/3	-	мин	UINT	560	Е	Длительность временного интервала расчёта потребления мощности, регулируемая с шагом 1 мин. Значение по умолчанию: 15 мин.

Номинальное напряжение

Команда настройки индикации номинального напряжения Vn (код команды = 47245) конфигурирует содержимое регистр... номинального напряжения.

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
9616	9615	4/3	1	В	UINT	065535	A/E	Номинальное напряжение Vn (значение по умолчанию = 400 B)

Информация с указанием даты и времени

Общее описание

Информация с указанием даты и времени позволяет пользователю знать все даты, относящиеся к важным сведениям, таким как предыдущие настройки защит и минимальные/максимальные значения токов, напряжений и частоты сети.

Таблица сведений с указанием даты и времени содержит:

- предыдущие параметры конфигурации защит и соответствующие даты;
- минимальные и максимальные значения измеренных напряжений и соответствующие даты;
- максимальные значения измеренных токов и соответствующие даты;
- минимальные и максимальные частоты сети и соответствующие даты.

Для чтения предыдущих регистров защиты (29600...29699) необходим запрос на операцию чтения блока из 100 регистров. Чтение начинается в начале операции чтения блока (см. *Чтение хронологического протокола*, *стр.* 44).

Для чтения минимальных/максимальных значений регистров напряжения, тока и частоты (29780...29827) необходим запрос на операцию чтения бока из 48 регистров. Чтение начинается в начале операции чтения блока (см. *Чтение хронологического протокола, стр. 44*).

Предыдущая конфигурация защиты от перегрузок

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29600	29599	Ч	1	A	UINT	-	A/E	Предыдущее значение уставки тока срабатывания Ir. Диапазон Ir зависит от номинального тока In.
29601 29602	29600 29601	Ч	1	С	UDINT	-	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29603	29602	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты (1)
29604	29603	Ч	1	мс	UINT	500 16000	A/E	Уставка времени tr (применение в распределительных сетях) Tr = 500, 1000, 2000, 4000, 8000, 16000 мс
29605 29606	29604 29605	Ч	1	С	UDINT	-	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29607	29606	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты (1)
29608	29603	Ч	1	_	UINT	530	A/E	Класс электродвигателя (только для применения с электродвигателем) Возможные значения = 5, 10, 20, 30
29609 29610	29608 29609	Ч	1	С	UDINT	_	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29611	29610	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты (1)
29612	29611	Ч	_	-	UINT	12	A/E	Предыдущая настройка вентилятор охлаждения (только для применения с электродвигателем) 1 = auto (самовентиляция), 2 = motor (принудительная вентиляция)
29613 29614	29612 29613	Ч	1	С	UDINT	-	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29615	29614	ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты (1)

Предыдущая конфигурация селективной токовой отсечки

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29616	29615	Ч	10	_	UINT	15100	A/E	Предыдущее значение уставки коэффициента lsd
29617 29618	29616 29617	Ч	1	С	UDINT	-	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29619	29618	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты (1)
29620	29619	Ч	1	мс	UINT	0400	A/E	Предыдущая уставка времени tsd tsd = 0, 100, 200, 300, 400 мс
								Если $tsd = 0$ мс, 1^2t должно быть на Off.
29621 29622	29620 29621	Ч	1	С	UDINT	-	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29623	29622	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты (1)
29624	29623	Ч	-	-	UINT	01	A/E	Предыдущий тип защиты: $0 = I^2 t \text{ On, } 1 = I^2 t \text{ Off}$
29625 29626	29624 29625	Ч	1	С	UDINT	_	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29627	29626	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты (1)

Предыдущая конфигурация мгновенной токовой отсечки

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
29628	29527	Ч	10	-	UINT	(1)	A/E	Предыдущее значение уставки коэффициента li
29629 29630	29628 29629	Ч	1	С	UDINT	-	A/E	Дата настройки в количестве секунд с 01.01.2000
29631	29630	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты. См. <i>Формат даты, стр. 40.</i>

- (1) Диапазон коэффициента li зависит от типоразмер... автоматического выключателя:
- Для Compact NSX 100/160, диапазон составляет 15...150.
- Для Compact NSX 250/400, диапазон составляет 15...120.
- Для Compact NSX 630, диапазон составляет 15...110.

Предыдущая конфигурация защиты от замыканий на землю

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29632	29631	Ч	100	мс	UINT	-	A/E	Предыдущее значение уставки коэффициента lg. Диапазон коэффициента lg зависит от номинального тока ln.
29633 29634	29632 29633	Ч	1	С	UDINT	_	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29635	29634	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты (1)
29636	29635	Ч	1	мс	UINT	0400	A/E	Предыдущая уставка времени tg tg = 0, 100, 200, 300, 400 мс
29637 29638	29636 29637	Ч	1	С	UDINT	_	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29639	29638	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты (1)
29640	29639	Ч	-	-	UINT	01	A/E	Предыдущий тип защиты: $0 = l^2 t \text{ On, } 1 = l^2 t \text{ Off}$
29641 29642	29640 29641	Ч	1	С	UDINT	-	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29643	29642	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты (1)

Предыдущая конфигурация дифференциальной защиты (блок Vigi)

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29644	29643	Ч	1	мА	UINT	_	A/E	Предыдущее значение уставки I∆n. I∆n зависит от номинального тока In.
29645 29646	29644 29645	Ч	1	С	UDINT	-	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29647	29646	Ч	1	мс	UINT	-	A/E	Дополнение в мс с уточнением даты (1)
29648	29647	Ч	1	мс	UINT	01000	A/E	Предыдущая уставка времени t∆n t∆n = 0, 60, 150, 500, 1 000 мс Если I∆n = 0,03 мА, T∆n = 0 мс
29649 29650	29648 29649	Ч	1	С	UDINT	_	A/E	Дата настройки в количестве секунд с 01.01.2000 (1)
29651	29650	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты (1)

Предыдущая конфигурация защиты от блокировки ротор...

Защита от блокировки ротор... реализуется только для применения с электродвигателем.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29652	29651	Ч	-	_	UINT	02	Е	Предыдущее состояние конфигурации: 0 = Off, 1 = On
29653 29654	29652 29653	Ч	1	С	UDINT	-	Е	Дата настройки в количестве секунд с 01.01.2000 (1)
29655	29654	Ч	1	мс	UINT	-	Е	Дополнение в мс с уточнением даты (1)
29656	29655	Ч	1	_	UINT	1080	Е	Предыдущее значение уставки коэффициента Ijam
29657 29658	29656 29657	Ч	1	С	UDINT	-	Е	Дата настройки в количестве секунд с 01.01.2000 (1)
29659	29658	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)
29660	29659	Ч	-	С	UINT	130	Е	Предыдущая уставка времени tjam
29661 29662	29660 29661	Ч	1	С	UDINT	-	Е	Дата настройки в количестве секунд с 01.01.2000 (1)
29663	29662	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)
(1) См. <i>Фо</i>	⊥ рмат даты, о	стр. 40.	_	1	1			

Предыдущая конфигурация защиты от неполнофазных режимов

Защита от неполнофазных режимов реализуется только для применения с электродвигателем.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29664	29663	Ч	1	%	UINT	1040	Е	Предыдущее значение уставки коэффициента lunbal
29665 29666	29664 29665	Ч	1	С	UDINT	-	Е	Дата настройки в количестве секунд с 01.01.2000 (1)
29667	29666	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)
29668	29667	Ч	1	С	UINT	110	Е	Предыдущая уставка времени tunbal
29669 29670	29668 29669	Ч	1	С	UDINT	-	E	Дата настройки в количестве секунд с 01.01.2000 (1)
29671	29670	Ч	1	мс	UINT	-	Е	Дополнение в мс с уточнением даты (1)
(1) См. <i>Фо</i>	рмат даты, с	стр. 40.			-	-		

Предыдущая конфигурация защиты от недогрузки

Защита от недогрузки реализуется только для применения с электродвигателем.

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание	
29672	29671	Ч	-	_	UINT	02	E	Предыдущее состояние конфигурации: 0 = Off, 1 = On	
29673 29674	29672 29673	Ч	1	С	UDINT	-	E	Дата настройки в количестве секунд с 01.01.2000 (1)	
29675	29674	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)	
29676	29675	Ч	1	-	UINT	3090	Е	Предыдущее значение уставки коэффициента lunderload	
29677	29676	Ч	1	С	UDINT	-	Е	Дата настройки в количестве секунд с 01.01.2000 (1)	
29678	29677								
29679	29678	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)	
29680	29679	Ч	-	С	UINT	1200	Е	Предыдущая уставка времени tunderload	
29681 29682	29680 29681	Ч	1	С	UDINT	-	Е	Дата настройки в количестве секунд с 01.01.2000 (1)	
29683	29682	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)	
(1) См. <i>Фо</i>	(1) См. Формат даты, стр. 40.								

Предыдущая конфигурация защиты от затянутого пуска

Защита от затянутого пуска реализуется только для применения с электродвигателем.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29684	29683	Ч	-	-	UINT	02	Е	Предыдущее состояние конфигурации: 0 = Off, 1 = On
29685 29686	29684 29685	Ч	1	С	UDINT	_	E	Дата настройки в количестве секунд с 01.01.2000 (1)
29687	29686	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)
29688	29687	Ч	1	-	UINT	1050	Е	Предыдущее значение уставки коэффициента llongstart
29689 29690	29688 29689	Ч	1	С	UDINT	-	E	Дата настройки в количестве секунд с 01.01.2000 (1)
29691	29690	Ч	1	мс	UINT	-	Е	Дополнение в мс с уточнением даты (1)
29692	29691	Ч	-	С	UINT	130	Е	Предыдущая уставка времени de tlongstart
29693 29694	29692 29693	Ч	1	С	UDINT	-	Е	Дата настройки в количестве секунд с 01.01.2000 (1)
29695	29694	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)

Предыдущая конфигурация защиты нейтрали

Защита нейтрали реализуется только в случае, если тип системы — 30 или 41 в регистре 3314. См. Тип системы, стр. 80.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29696	29695	Ч	-	_	UINT	03	A/E	Предыдущее значение уставки коэффициента нейтрали 0 = Off 1 = 0.5 2 = 1.0 3 = OSN
29697 29698	29696 29697	Ч	1	С	UDINT	_	A/E	Дата настройки в количестве секунд с 01.01.2000
29699	29698	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты. См. <i>Формат даты, стр. 40.</i>

Минимальные/ максимальные значения напряжения V12 Регистр = 0, если напряжение < 25 B.

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание		
29780	29779	Ч	1	В	UINT	0850	Е	Минимальное действующее значение линейного напряжения V12		
29781 29782	29780 29781	Ч	1	С	UDINT	_	Е	Дата в количестве секунд с 01.01.2000 (1)		
29783	29782	Ч	1	мс	UINT	-	Е	Дополнение в мс с уточнением даты (1)		
29784	29783	Ч	1	В	UINT	0850	E	Максимальное действующее значение линейного напряжения V12		
29785 29786	29784 29785	Ч	1	С	UDINT	_	E	Дата в количестве секунд с 01.01.2000 (1)		
29787	29786	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)		
(1) См. <i>Фор</i>	(1) См. Формат даты, стр. 40.									

Минимальные/ максимальные значения напряжения V23 Регистр = 0, если напряжение < 25 B.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29788	29787	Ч	1	В	UINT	0850	E	Минимальное действующее значение линейного напряжения V23
29789 29790	29788 29789	Ч	1	С	UDINT	-	E	Дата в количестве секунд с 01.01.2000 (1)
29791	29790	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)
29792	29791	Ч	1	В	UINT	0850	Е	Максимальное действующее значение линейного напряжения V23
29793 29794	29792 29793	Ч	1	С	UDINT	_	Е	Дата в количестве секунд с 01.01.2000 (1)
29795	29794	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)
(1) См. Фо	⊥ Омат даты, о	стр. 40.	'		1	-	1	-

Минимальные/ максимальные значения напряжения V31 Регистр = 0, если напряжение < 25 B.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29796	29795	Ч	1	В	UINT	0850	Е	Минимальное действующее значение линейного напряжения V31
29797 29798	29796 29797	Ч	1	С	UDINT	-	Е	Дата в количестве секунд с 01.01.2000 (1)
29799	29798	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)
29800	29799	Ч	1	В	UINT	0850	Е	Максимальное действующее значение линейного напряжения V31
29801 29802	29800 29801	Ч	1	С	UDINT	-	Е	Дата в количестве секунд с 01.01.2000 (1)
29803	29802	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты (1)
(1) См. <i>Фо</i>	рмат даты,	стр. 40.				<u>'</u>		

Максимальное значение тока I1

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
29804	29779	Ч	1	Α	UINT	020xln	A/E	Максимальное действующие значение тока фазы 1 : I1
29805 29806	29780 29781	Ч	1	С	UDINT	_	A/E	Дата в количестве секунд с 01.01.2000
29807	29782	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты. См. <i>Формат даты, стр. 40</i> .

Максимальное значение тока I2

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
29808	29807	Ч	1	Α	UINT	020xln	A/E	Максимальное действующие значение тока фазы 2 : 12
29809 29810	29808 29809	Ч	1	С	UDINT	_	A/E	Дата в количестве секунд с 01.01.2000
29811	29810	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты. См. <i>Формат даты, стр. 40.</i>

Максимальное значение тока 13

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
29812	29811	Ч	1	Α	UINT	020xln	A/E	Максимальное действующие значение тока фазы 3 : 13
29813 29814	29812 29813	Ч	1	С	UDINT	_	A/E	Дата в количестве секунд с 01.01.2000
29815	29814	Ч	1	МС	UINT	_	A/E	Дополнение в мс с уточнением даты. См. <i>Формат даты, стр. 40.</i>

Максимальное значение тока IN

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
29816	29815	Ч	1	Α	UINT	020xln	A/E	Максимальное значение тока нейтрали: IN
29817 29818	29816 29817	Ч	1	С	UDINT	_	A/E	Дата в количестве секунд с 01.01.2000
29819	29818	Ч	1	мс	UINT	_	A/E	Дополнение в мс с уточнением даты. См. <i>Формат даты, стр. 40.</i>

Минимальное значение частоты сети

Если программное обеспечение не может вычислить частоту, оно возвращает Not Evaluated = 32768 (0x8000).

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
29820	29819	Ч	1	Гц	UINT	1504400	Е	Минимальное значение частоты сети
29821	29820	Ч	1	С	UDINT	_	Е	Дата в количестве секунд с 01.01.2000
29822	29821							
29823	29822	Ч	1	мс	UINT	_	Е	Дополнение в мс с уточнением даты.
								См. Формат даты, стр. 40.

Максимальное значение частоты сети

Если программное обеспечение не может вычислить частоту, оно возвращает Not Evaluated = 32768 (0x8000).

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
29824	29823	Ч	1	Гц	UINT	1504400	Е	Максимальное значение частоты сети
29825 29826	29824 29825	Ч	1	С	UDINT	_	E	Дата в количестве секунд с 01.01.2000
29827	29826	Ч	1	МС	UINT	_	E	Дополнение в мс с уточнением даты. См. <i>Формат даты, стр. 40</i> .

Индикаторы техобслуживания

Счётчик отработанных часов

Счётчик отработанных часов показывает суммарную продолжительность работы автоматического выключателя. Продолжительность работы записывается раз в час в энергонезависимую память EEPROM (ЭСППЗУ). Если счётчик отработанных часов достиг максимального значения 4 294 967 295 и происходит новое событие учёта времени, счётчик сбрасывается на 0.

Для чтения счётчика отработанных часов необходим запрос на операцию чтения блока из 2 регистров (см. *Чтение хронологического протокола*, *стр.* 44).

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
29851	29850	Ч	1	Час	UDINT	04 294 967 295	A/E	Счётчик отработанных часов
29852	29851							

Счётчик степени износа

Счётчик степени износа показывает в % степень износа контактов автоматического выключателя.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29853	29852	Ч	1	%	UINT	032766	A/E	Счётчик степени износа 0 % = у автоматического выключателя новые контакты > 100% = контакты автоматического выключателя необходимо заменить

Счётчик записей в памяти EEPROM (ЭСППЗУ)

Счётчик записей EEPROM показывает количество результатов измерения энергии, хранящихся в памяти EEPROM. Результаты измерения энергии записываются в EEPROM раз в час. Если счётчик записей EEPROM достиг максимального значения 4 294 967 295 и происходит новое событие записи, счётчик записей сбрасывается на 0.

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
29855	29854	Ч	1	_	UDINT	04 294 967 295	A/E	Счётчик записей в памяти EEPROM (ЭСППЗУ)
29856	29855							

Счётчики профилей нагрузки

Счётчики профилей нагрузки показывают количество часов работы для каждого диапазона тока расцепителя Micrologic. Если счётчики профилей нагрузки достигли максимального значения 4 294 967 295 и происходит новое событие профиля нагрузки, счётчики профилей нагрузки сбрасываются на 0.

Для чтения счётчиков профилей нагрузки необходим запрос на операцию чтения блока из 8 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29880 29881	29879 29880	Ч	1	Час	UDINT	04 294 967 295	A/E	Количество часов работы для диапазона 0 - 49 % номинального тока In
29882 29883	29881 29882	Ч	1	Час	UDINT	04 294 967 295	A/E	Количество часов работы для диапазона 50 - 79 % номинального тока In
29884 29885	29883 29884	Ч	1	Час	UDINT	04 294 967 295	A/E	Количество часов работы для диапазона 80 - 89 % номинального тока In
29886 29887	29885 29886	Ч	1	Час	UDINT	04 294 967 295	A/E	Количество часов работы для диапазона 90 - 100 % номинального тока In

Счётчики температурных профилей

Счётчики температурных профилей показывают количество часов работы для каждого диапазона температуры расцепителя Micrologic. Если счётчики температурных профилей достигли максимального значения 4 294 967 295 и происходит новое событие профиля температуры, счётчики температурных профилей сбрасываются на 0.

Для чтения счётчиков температурных профилей необходим запрос на операцию чтения блока из 12 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
29890 29891	29889 29890	Ч	1	Час	UDINT	04 294 967 295	A/E	Количество часов работы при температуре < -30 °C
29892 29893	29891 29892	Ч	1	Час	UDINT	04 294 967 295	A/E	Количество часов работы, в течение которых температур была в диапазоне −30 °С +59 °С
29894 29895	29893 29894	Ч	1	Час	UDINT	04 294 967 295	A/E	Количество часов работы, в течение которых температур была в диапазоне +60 °С +74 °С
29896 29897	29895 29896	Ч	1	Час	UDINT	04 294 967 295	A/E	Количество часов работы, в течение которых температур была в диапазоне +75 °C +89 °C
29898 29899	29897 29898	Ч	1	Час	UDINT	04 294 967 295	A/E	Количество часов работы, в течение которых температур была в диапазоне +90 °C +99 °C
29900 29901	29899 29900	Ч	1	Час	UDINT	04 294 967 295	A/E	Количество часов работы при температуре > +100 °C

Счётчики срабатываний защиты

Счётчики срабатываний защиты показывает количество аварийных отключений, выполненных защитой каждого типа: защитой от перегрузок, селективной токовой отсечкой, мгновенной токовой отсечкой, защитой от замыканий на землю, дифференциальной защитой (блок Vigi), защитой от блокировки ротора, защитой от неполнофазных режимов, защитой от затянутого пуска и защитой от недогрузки. Счётчики срабатываний защиты прекращают счёт по достижении максимального значения 10 000.

Для чтения счётчиков срабатываний защиты необходим запрос на операцию чтения блока из 9 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29910	29909	Ч	1	_	UINT	010000	A/E	Количество срабатываний защиты от замыканий на землю
29911	29910	Ч	1	_	UINT	010000	A/E	Количество срабатываний селективной токовой отсечки
29912	29911	Ч	1	_	UINT	010000	A/E	Количество срабатываний мгновенной токовой отсечки (включая встроенную мгновенную токовую отсечку, мгновенную токовую отсечку с дифференциальной защитой (блок Vigi) и «рефлексную» защиту)
29913	29912	Ч	1	_	UINT	010000	A/E	Количество срабатываний защиты от замыканий на землю.
29914	29913	Ч	1	_	UINT	010000	A/E	Количество срабатываний дифференциальной защиты (блок Vigi)
29915	29914	Ч	1	_	UINT	010000	A/E	Количество срабатываний защиты от блокировки ротора
29916	29915	Ч	1	_	UINT	010000	A/E	Количество срабатываний защиты от неполнофазных режимов
29917	29916	Ч	1	-	UINT	010000	A/E	Количество срабатываний защиты от затянутого пуска
29918	29917	Ч	1	_	UINT	010000	A/E	Количество срабатываний защиты от недогрузки

Счётчики аварийнопредупредительных сигналов Счётчики аварийно-предупредительных сигналов показывают количество выданных аварийно-предупредительных сигналов. В случае реконфигурации сигнала счётчик сбрасывается на нуль. Счётчики сигналов прекращают счёт по достижении максимального значения 10 000.

Для чтения счётчиков аварийно-предупредительных сигналов необходим запрос на операцию чтения блока из 13 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
29940	29939	Ч	1	_	UINT	010000	A/E	Счётчик задаваемого пользователем сигнал 201
29941	29940	Ч	1	_	UINT	010000	A/E	Счётчик задаваемого пользователем сигнал 202
29942	29941	Ч	1	_	UINT	010000	A/E	Счётчик задаваемого пользователем сигнал 203
29943	29942	Ч	1	_	UINT	010000	A/E	Счётчик задаваемого пользователем сигнал 204
29944	29943	Ч	1	_	UINT	010000	A/E	Счётчик задаваемого пользователем сигнал 205
29945	29944	Ч	1	_	UINT	010000	A/E	Счётчик задаваемого пользователем сигнал 206
29946	29945	Ч	1	_	UINT	010000	A/E	Счётчик задаваемого пользователем сигнал 207
29947	29946	Ч	1	_	UINT	010000	A/E	Счётчик задаваемого пользователем сигнал 208
29948	29947	Ч	1	_	UINT	010000	A/E	Счётчик задаваемого пользователем сигнал 209
29949	29948	Ч	1	_	UINT	010000	A/E	Счётчик задаваемого пользователем сигнал 210
29950	29949	Ч	1	_	UINT	010000	A/E	Счётчик предварительного сигнала Ir
29951	29950	Ч	1	-	UINT	010000	A/E	Счётчик предварительного сигнала lg
29952	29951	Ч	1	_	UINT	010000	A/E	Счётчик предварительного сигнала І∆п

Счётчики операций техобслуживания

Счётчики операций техобслуживания показывают количество некоторых выполненных операций техобслуживания. Счётчики операций прекращают счёт по достижении максимального значения 10 000.

Для чтения счётчиков операций техобслуживания необходим запрос на операцию чтения блока из 7 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
29980	29979	Ч	-	-	UINT	010000	A/E	Счётчик активаций переключателя блокировки расцепителя Micrologic
29981	29980	Ч	-	_	UINT	010000	A/E	Счётчик подключений модуля техобслуживания
29982	29981	Ч	-	_	UINT	010000	A/E	Счётчик испытаний на замыкание на землю
29983	29982	Ч	-	_	UINT	010000	A/E	Счётчик испытаний на повреждение изоляции (блок Vigi)
29984	29983	Ч	-	_	UINT	010000	A/E	Счётчик испытаний функции логической селективности ZSI
29985	29984	Ч	-	_	UINT	010000	A/E	Счётчик цифровых испытаний прогрузкой
29986	29985	Ч	-	_	UINT	010000	A/E	Счётчик команд на сброс минимальных/максимальных значений

Прочие параметры

Текущая дата

Для чтения текущей даты необходим запрос на операцию чтения блока из 3 регистров (см. *Чтение хронологического протокола, стр. 44*).

Команда настройки абсолютного времени (код команды 769) конфигурирует содержимое регистров текущей даты.

Регистр	Адрес	4/3	х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
3000 3001	2999 3000	4/3	1	С	UDINT	-	A/E	Дата в количестве секунд с 01.01.2000
3002	3001	4/3	1	мс	UINT	-	A/E	Дополнение в мс с уточнением даты.
								См. Формат даты, стр. 40.

Температура

Pe	гистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
885	51	8850	Ч	1	°C	INT	-30+120	A/E	Температура расцепителя Micrologic

Время, оставшееся до срабатывания защиты от перегрузок

Время, оставшееся до срабатывания защиты от перегрузок, вычисляется каждую секунду. В случае срабатывания другой защиты, вычисление оставшегося до срабатывания защиты от перегрузок времени продолжается.

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
8865	8864	Ч	1	С	UINT	17200	A/E	Время, оставшееся до срабатывания защиты от перегрузок (1)

- (1) Время, оставшееся до срабатывания защиты от перегрузок = 32768 (0х8000), если
- защита от перегрузок уже сработала,
- время, оставшееся до срабатывания защиты от перегрузок, меньше 1 с, или
- защитой от перегрузок повреждений не обнаружено.

Если оставшееся до срабатывания защиты от перегрузок время > 7200 с, оставшееся до срабатывания защиты от перегрузок время = 7200 с.

Чередование фаз

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
8872	8871	Ч	1	_	UINT	01	Е	0 = порядок чередования фаз 123 1 = порядок чередования фаз 132

Состояние отказа

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Бит	Описание
29390	29389	Ч	_	_	UINT	_	A/E	-	Состояние отказа
							A/E	0	Зарезервировано
							A/E	1	STOP (внутренний отказ) 0 = Нет внутреннего отказа 1 = Внутренний отказ
							A/E	2	ERROR (внутренний отказ) 0 = Нет внутреннего отказа 1 = Внутренний отказ
							A/E	315	Зарезервировано

Примечание: В случае события STOP, необходимо обязательно заменить расцепитель Micrologic. В случае события ERROR, рекомендуется заменить расцепитель Micrologic (основные защитные функции ещё действуют, однако замена расцепителя Micrologic предпочтительна).

Переключатели расцепителя Micrologic

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
29990	29989	Ч	1	-	UINT	19	A/E	Положение переключателя 1 расцепителя Micrologic (Ir)
29991	29990	Ч	1	_	UINT	19	A/E	Положение переключателя 2 расцепителя Micrologic (Isd, Ig/I Δ n)

Состояние переключателя блокировка расцепителя Micrologic

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
29992	29991	Ч	1	_	UINT	01	A/E	0 = переключат. блокировки Micrologic в «открытом» положении 1 = переключат. блокировки Micrologic в «запертом» положении

Вспомогательный источник питания 24 В

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
29993	29992	Ч	1	_	UINT	01	A/E	0 = вспомогательный источник питания 24 В отсутствует 1 = вспомогательный источник питания 24 В присутствует

Светодиодные индикаторы расцепителя Micrologic

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Бит	Описание
30005	30004	Ч	-	_	UINT	_	A/E	-	Светодиодные индикаторы расцепителя Micrologic
							A/E	0	Светодиод «Ready» («Готов») 0 = расцепитель не готов к работе (светодиод не мигает) 1 = расцепитель готов к работе (светодиод мигает)
							A/E	1	Светодиод предварительной аварийно- предупредительной сигнализации (только для применения в распределительных сетях) 0 = предварительная сигнализация не активна (светодиод не горит) 1 = предварительная сигнализация активна (светодиод горит постоянным светом)
							A/E	2	Светодиод сигнализации о перегрузке 0 = сигнализация о перегрузке не активна (светодиод не горит) 1 = сигнализация о перегрузке активна (светодиод горит постоянным светом)
							A/E	315	Зарезервировано

3.2 Команды расцепителя Micrologic

Общие сведения

Введение

В данном подразделе описаны команды расцепителя Micrologic.

Содержание данного подраздела Данный подраздел содержит следующие темы:

Тема	Страница
Команды защиты	94
Команды квитирования событий	100
Команды конфигурирования измерений	101

Команды защиты

Общее описание

Описание команд защиты Modbus дано в следующей последовательности:

- расположение регистров, в которых пользователь читает соответствующие параметры команды защиты;
- описание регистров, в которых пользователь настраивает соответствующие параметры команды защиты.

Перечень команд защиты

Нижеприведённая таблица содержит команды защиты, соответствующие коды команд и уровни пароля. Процедура редактирования команды изложена в пункте *Выполнение команды, стр. 33*.

Команда	Код команды	Уровень пароля
Защита от перегрузок	45192	Уровень 4
Селективная токовая отсечка	45193	Уровень 4
Мгновенная токовая отсечка	45194	Уровень 4
Защита от замыканий на землю	45195	Уровень 4
Дифференциальная защита (блок Vigi)	45196	Уровень 4
Защита нейтрали	45197	Уровень 4
Защита от блокировки ротора	45448	Уровень 4
Защита от недогрузки	45449	Уровень 4
Защита от неполнофазных режимов	45450	Уровень 4
Защита от затянутого пуска	45451	Уровень 4

Защита от перегрузок

Пользователь может прочитать параметры защиты от перегрузок в регистрах 8754 - 8763. См. *Параметры защиты от перегрузок, стр. 75*.

Чтобы настроить параметры защиты от перегрузок, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
8000	7999	-	_	UINT	45192	A/E	Код команды = 45192
8001	8000	-	_	UINT	18	A/E	Число параметров (байты) = 18
8002	8001	-	-	UINT	5121	A/E	Место назначения = 5121 (0х1401)
8003	8002	-	-	UINT	1	A/E	1
8004 8005	8003 8004	-	-	STRING	-	A/E	Пароль уровня 4 (значение по умолчанию = '0000' = 0x30303030)
8006	8005	1	A	UINT	_	A/E	Уставка тока срабатывания Ir. Диапазон Ir зависит от номинального тока In и от положения переключателя 1 расцепителя Micrologic (Ir).
8007	8006	1	мс	UINT	500 16000	A/E	Уставка времени tr (только для применения в распределительных сетях) tr = 500, 1 000, 2 000, 4 000, 8 000, 16 000 мс
8008	8007	_	_	UINT	530	A/E	Класс электродвигателя (только для применения с электродвигателем) Возможные значения = 5, 10, 20, 30
8009	8008	_	_	UINT	1 2	A/E	Предыдущая настройка вентилятора охлаждения (только для применения с электродвигателем) 1 = auto (самовентиляция), 2 = motor (принудительная вентиляция)

Селективная токовая отсечка

Пользователь может прочитать параметры селективной токовой отсечки в регистрах 8764 - 8773. См. *Параметры селективной токовой отсечки, стр. 75.*

Чтобы настроить параметры селективной токовой отсечки, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8000	7999	-	_	UINT	45193	A/E	Код команды = 45193
8001	8000	-	_	UINT	16	A/E	Число параметров (байты) = 16
8002	8001	-	_	UINT	5121	A/E	Место назначения = 5121 (0х1401)
8003	8002	-	_	UINT	1	A/E	1
8004 8005	8003 8004	-	_	STRING	-	A/E	Пароль уровня 4 (значение по умолчанию = '0000' = 0х30303030)
8006	8005	10	_	UINT	15100	A/E	Коэффициент lsd, регулируемый с шагом 5. Уставка тока срабатывания lsd = (Ir) x (коэффициент lsd) / 10
8007	8006	1	мс	UINT	0400	A/E	Уставка времени tsd tsd= 0, 100, 200, 300, 400 мс Если tsd = 0 мс, I ² t должно быть на Off.
8008	8007	-	-	UINT	01	A/E	Тип защиты: $0=l^2t$ On, $1=l^2t$ Off Для применения с электродвигателем, $tsd=0$ мс и l^2t на Off (фиксированные значения).

Мгновенная токовая отсечка

Пользователь может прочитать параметры мгновенной токовой отсечки в регистрах 8774 - 8783. См. *Параметры мгновенной токовой отсечки, стр. 76.*

Чтобы настроить параметры мгновенной токовой отсечки, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	X	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	45194	A/E	Код команды = 45194
8001	8000	-	-	UINT	12	A/E	Число параметров (байты) = 12
8002	8001	-	_	UINT	5121	A/E	Место назначения = 5121 (0x1401)
8003	8002	-	_	UINT	1	A/E	1
8004	8003	-	-	STRING	_	A/E	Пароль уровня 4
8005	8004						(значение по умолчанию = '0000' = 0x30303030)
8006	8005	10	-	UINT	(1)	A/E	Коэффициент Ii, регулируемый с шагом 5
							Уставка тока срабатывания li = (ln) x (коэффициент li) / 10

- (1) Диапазон коэффициента li зависит от типоразмера автоматического выключателя:
- Для Compact NSX 100/160, диапазон составляет 15...150.
- Для Compact NSX 250/400, диапазон составляет 15...120.
- Для Compact NSX 630, диапазон составляет 15...110.

Защита от замыканий на землю

Пользователь может прочитать параметры защиты от замыканий на землю в регистрах 8784 - 8793. См. *Параметры защиты от замыканий на землю, стр. 76*.

Чтобы настроить параметры защиты от замыканий на землю, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8000	7999	-	-	UINT	45195	A/E	Код команды = 45195
8001	8000	-	-	UINT	16	A/E	Число параметров (байты) = 16
8002	8001	-	-	UINT	5121	A/E	Место назначения = 5121 (0x1401)
8003	8002	-	-	UINT	1	A/E	1
8004 8005	8003 8004	-	_	STRING	_	A/E	Пароль уровня 4 (значение по умолчанию = '0000' = 0x30303030)
8006	8005	100	_	UINT	-	A/E	Коэффициент Ig, регулируемый с шагом 5. Значение определяется положением переключателя 2 (Ig) Micrologic. Значение 0 означает, что защита от замыканий на землю дезактивирована. Уставка тока срабатывания Ig = (In) x (коэффициент Ig) / 100
8007	8006	1	МС	UINT	0400	A/E	Уставка времени tg $tg=0$, 100, 200, 300, 400 мс $tg=0$ мс, $tg=$
8008	8007	_	_	UINT	01	A/E	Тип защиты: $0 = I^2 t$ On, $1 = I^2 t$ Off Для применения с электродвигателем, $tsd = 0$ мс и $I^2 t$ на Off (фиксированные значения).

Дифференциальная защита (блок Vigi)

Пользователь может прочитать параметры дифференциальной защиты (блок Vigi) в регистрах 8794 - 8803. См. *Параметры дифференциальной защиты (блок Vigi), стр. 77.*

Чтобы настроить параметры дифференциальной защиты (блок Vigi), пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	45196	A/E	Код команды = 45196
8001	8000	-	-	UINT	14	A/E	Число параметров (байты) = 14
8002	8001	-	_	UINT	5121	A/E	Место назначения = 5121 (0x1401)
8003	8002	-	_	UINT	1	A/E	1
8004	8003	_	_	STRING	_	A/E	Пароль уровня 4
8005	8004						(значение по умолчанию = '0000' = 0x30303030)
8006	8005	1	мА	UINT	_	A/E	Значение I∆n. I∆n зависит от номинального тока In.
8007	8006	1	мс	UINT	01000	A/E	Уставка времени t∆n
							t∆n = 0, 60, 150, 500, 1 000 мс
							Если І∆п = 0,03 мА, t∆п = 0 мс

Защита нейтрали

Защита нейтрали реализуется только в случае, если тип системы — 30 или 41 в регистре 3314. См. *Тип системы, стр. 80.* Пользователь может прочитать параметры защиты нейтрали в регистрах 8916 - 8919. См. *Параметры защиты нейтрали, стр. 78*.

Чтобы настроить параметры защиты нейтрали, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	45197	A/E	Код команды = 45197
8001	8000	-	-	UINT	12	A/E	Число параметров (байты) = 12
8002	8001	-	-	UINT	5121	A/E	Место назначения = 5121 (0х1401)
8003	8002	-	-	UINT	1	A/E	1
8004	8003	1-	-	STRING	_	A/E	Пароль уровня 4 (значение по умолчанию =
8005	8004						'0000' = 0x30303030)
8006	8005	T-	_	UINT	03	A/E	Уставка коэффициента нейтрали
							0 = Off
							1 = 0.5
							2 = 1.0
							3 = OSN

Защита от блокировки ротора

Защита от блокировки ротора реализуется только для применения с электродвигателем.

Пользователь может прочитать параметры защиты от блокировки ротора в регистрах 8900 - 8903. См. *Параметры защиты от блокировки ротора, стр. 77.*

Чтобы настроить параметры защиты от блокировки ротора, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	45448	Е	Код команды = 45448
8001	8000	-	_	UINT	16	Е	Число параметров (байты) = 16
8002	8001	-	_	UINT	5121	Е	Место назначения = 5121 (0х1401)
8003	8002	-	_	UINT	1	Е	1
8004	8003	-	_	STRING	_	Е	Пароль уровня 4
8005	8004						(значение по умолчанию = '0000' = 0x30303030)
8006	8005	-	_	UINT	01	Е	Активация: 0 = Off, 1 = On
8007	8006	10	_	UINT	1080	Е	Коэффициент Ijam, регулируемый с шагом 1.
							Уставка тока срабатывания Ijam = (Ir) x (коэффициент Ijam) / 10
8008	8007	1	С	UINT	130	E	Уставка времени tjam

Защита от недогрузки

Защита от недогрузки реализуется только для применения с электродвигателем.

Пользователь может прочитать параметры защиты от недогрузки в регистрах 8908 - 8911. См. *Параметры защиты от недогрузки, стр. 78*.

Чтобы настроить параметры защиты от недогрузки, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
8000	7999	-	_	UINT	45449	Е	Код команды = 45449
8001	8000	-	-	UINT	16	Е	Число параметров (байты) = 16
8002	8001	-	-	UINT	5121	Е	Место назначения = 5121 (0х1401)
8003	8002	-	-	UINT	1	Е	1
8004 8005	8003 8004	-	_	STRING	_	E	Пароль уровня 4 (значение по умолчанию = '0000' = 0x30303030)
8006	8005	-	-	UINT	01	Е	Активация: 0 = Off, 1 = On
8007	8006	100	_	UINT	3090	Е	Коэффициент lunderload, регулируемый с шагом 1. Уставка тока срабатывания lunderload = (Ir) x (lunderload) / 100
8008	8007	1	С	UINT	1200	Е	Уставка времени tunderload

Защита от неполнофазных режимов

Защита от неполнофазных режимов реализуется только для применения с электродвигателем.

Пользователь может прочитать параметры защиты от неполнофазных режимов в регистрах 8904 - 8907. См. *Параметры защиты от неполнофазных режимов, стр. 77.*

Чтобы настроить параметры защиты от неполнофазных режимов, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	45450	Е	Код команды = 45450
8001	8000	-	-	UINT	14	Е	Число параметров (байты) = 14
8002	8001	-	-	UINT	5121	Е	Место назначения = 5121 (0х1401)
8003	8002	-	-	UINT	1	Е	1
8004	8003	-	_	STRING	_	Е	Пароль уровня 4
8005	8004						(значение по умолчанию = '0000' = 0х30303030)
8006	8005	1	%	UINT	1040	Е	Коэффициент lunbal
8007	8006	1	С	UINT	110	Е	Уставка времени tunbal

Защита от затянутого пуска

Защита от затянутого пуска реализуется только для применения с электродвигателем.

Пользователь может прочитать параметры защиты от затянутого пуска в регистрах 8912 - 8915. См. *Параметры защиты от затянутого пуска, стр. 78*.

Чтобы настроить параметры защиты от затянутого пуска, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8000	7999	-	_	UINT	45451	Е	Код команды = 45451
8001	8000	1	_	UINT	16	Е	Число параметров (байты) = 16
8002	8001	-	_	UINT	5121	Е	Место назначения = 5121 (0х1401)
8003	8002	-	_	UINT	1	E	1
8004 8005	8003 8004	_	_	STRING	_	E	Пароль уровня 4 (значение по умолчанию = '0000' = 0x30303030)
8006	8005	-	_	UINT	01	Е	Активация: 0 = Off, 1 = On
8007	8006	10	-	UINT	1080	Е	Коэффициент llongstart, регулируемый с шагом 1. Уставка тока срабатывания llongstart = (Ir) х (коэффициент llongstart) / 10
8008	8007	1	С	UINT	1200	Е	Уставка времени tlongstart

Команды квитирования событий

Перечень команд квитирования событий

Нижеприведённая таблица содержит команды квитирования событий, соответствующие коды команд и уровни пароля:

Команда	Код команды	Уровень пароля
Acknowledge a latched output (Квитирование блокировки выхода)	45216	Уровень 3 или 4
Acknowledge a trip (Квитирование аварийного отключения)	45217	Уровень 4

Acknowledge a Latched Output (Квитирование блокировки выхода)

Пользователь может прочитать параметры выходов модуля SDx в регистрах 9801 - 9810. См. *Конфигурирование модуля SDx, стр. 79.*

Чтобы квитировать блокировку выхода, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание
		_	MOW.				
8000	7999	-	-	UINT	45216	A/E	Код команды = 45216
8001	8000	-	-	UINT	12	A/E	Число параметров (байты) = 12
8002	8001	<u> -</u>	-	UINT	5121	A/E	Место назначения = 5121 (0х1401)
8003	8002	T-	-	UINT	1	A/E	1
8004	8003	-	-	STRING	_	A/E	Пароль уровня 3 или 4
8005	8004						 Для уровня 4, значение по умолчанию = =
							'0000' = 0x30303030
							 Для уровня 3, значение по умолчанию = =
							'3333' = 0x33333333
8006	8005	-	_	UINT	12	A/E	1 = relais 1, 2 = relais 2

Acknowledge a Trip (Квитирование аварийного отключения)

Чтобы квитировать аварийное отключение, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	_	UINT	45217	A/E	Код команды = 45217
8001	8000	-	_	UINT	10	A/E	Число параметров (байты) = 10
8002	8001	-	_	UINT	5121	A/E	Место назначения = 5121 (0х1401)
8003	8002	-	_	UINT	1	A/E	1
8004 8005	8003 8004	-	_	STRING	_	A/E	Пароль уровня 4 (значение по умолчанию = '0000' = 0х30303030)

Команды конфигурирования измерений

Перечень команд конфигурирования измерений Нижеприведённая таблица содержит команды конфигурирования измерений, соответствующие коды команд и уровни пароля:

Команда	Код команды	Уровень пароля
Set up ENVT presence (Настройка наличия функции ENVT)	46472	Уровень 4
Reset minimum/maximum (Сброс минимальных/максимальных значений)	46728	Уровень 3 или 4
Start/stop synchronization (Запуск/остановка синхронизации)	46729	Уровень 3 или 4
Power flow sign configuration (Конфигурирование знака мощности)	47240	Уровень 4
Power factor sign configuration (Конфигурирование знака коэффициента мощности)	47241	Уровень 4
Energy accumulation mode configuration (Конфигурирование метода суммирования энергии)	47242	Уровень 4
Current demand configuration (Конфигурирование потребления тока)	47243	Уровень 4
Power demand configuration (Конфигурирование потребления мощности)	47244	Уровень 4
Set up nominal voltage Vn display (Настройка индикации номинального напряжения Vn)	47245	Уровень 4

Set up ENVT presence (Настройка наличия функции ENVT) Пользователь может прочитать параметры наличия дополнительной функции ENVT (External Neutral Voltage Tap = внешний вывод напряжения нейтрали) в регистре 3314. См. *Тип системы, стр. 80.*

Чтобы настроить наличие функции ENVT, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
8000	7999	-	_	UINT	46472	E	Код команды = 46472
8001	8000	-	-	UINT	12	Е	Число параметров (байты) = 12
8002	8001	-	-	UINT	5121	Е	Место назначения = 5121 (0х1401)
8003	8002	-	-	UINT	1	Е	1
8004 8005	8003 8004	-	_	STRING	-	E	Пароль уровня 4 (значение по умолчанию = '0000' = 0x30303030)
8006	8005	-	_	UINT	01	E	0 = ENVT отсутствует 1 = ENVT присутствует

Reset Minimum/ Maximum (Сброс минимальных/ максимальных значений) Команда на сброс минимальных/максимальных значений обнуляет минимальные значения измерений в реальном времени (регистры 1300 - 1599) и максимальные значения измерений в реальном времени (регистры 1600 - 1899). См. Минимальные/максимальные значения величин, измеряемых в реальном времени, стр. 54.

Команда на сброс минимальных/максимальных значений обнуляет измерения энергии (регистры 2000 - 2025). См. *Измерения энергии, стр. 55.*

Команда на сброс минимальных/максимальных значений обнуляет пиковые значения потребления (регистры 2200 - 2237). См. *Измерения потребления, стр. 56.*

Пользователь может прочитать минимальные и максимальные значение тока, напряжения и частоты, а также соответствующие даты, в регистрах 29780 - 29827. См. *Минимальные/максимальные значения напряжения V12, стр. 86.*

Пользователь может прочитать даты команды на сброс минимальных/максимальных значений в регистрах 2900 - 2929. См. *Время сброса минимальных/максимальных значений, стр. 58*.

Чтобы сбросить минимальные/максимальные значения измерений, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Тип	Диапазон	A/E	Бит	Описание
8000	7999	UINT	46728	-	-	Код команды = 46728
8001	8000	UINT	12	_	_	Число параметров (байты) = 12
8002	8001	UINT	5121	-	_	Место назначения = 5121 (0х1401)
8003	8002	UINT	1	-	-	1
8004 8005	8003 8004	STRING	-	_	-	Пароль уровня 3 или 4
8006	8005	UINT	-	_	_	Сброс минимальных/максимальных значений измеряемых переменных величин Чтобы сбросить переменную величину, установите бит в 1. Для сохранения текущих величин, установите бит в 0.
				A/E	0	Сброс минимального/максимального тока (I1, I2, I3, IN, Imax, Ig, I∆n, Imoy et lunbalance)
				E	1	Сброс минимального/максимального напряжения (V12, V13, V23, V1N, V2N, V3N, Vavg L-L, Vavg L-N и Vunbalance)
				E	2	Сброс минимальной/максимальной мощности (активная мощность, реактивная мощность, полная мощность и мощность гармонических искажений)
				Е	3	Сброс минимального/максимального коэффициента мощности и cos j
				E	4	Сброс минимального/максимального общего гармонического искажения
				Е	5	Сброс пикового значения потребляемого тока
				E	6	Сброс пикового значения потребляемой активной, реактивной и полной мощности
				Е	7	Сброс минимальной/максимальной частоты
				Е	8	Сброс минимальной/максимальной тепловой памяти (только для применения с электродвигателем)
				E	9	Сброс энергии (активной, реактивной, полной)
				-	1015	Зарезервировано

Start/Stop Synchronization (Запуск/остановка синхронизации) Команда на запуск/остановку синхронизации используется для запуска или остановки вычисления потребления тока или мощности. Первая команда запускает вычисление, следующая команда обновляет значение потребляемого тока или мощности и затем перезапускает вычисление. Временной интервал между двумя командами должен быть менее 1 часа.

Чтобы запустить/остановить синхронизацию, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед. изм.	Тип	Диапазон	A/E	Описание	
8000	7999	-	-	UINT	46729	E	Код команды = 46729	
8001	8000	-	-	UINT	12	Е	Число параметров (байты) = 12	
8002	8001	<u> </u>	-	UINT	5121	E	Место назначения =5121 (0х1401)	
8003	8002	-	-	UINT	1	Е	1	
8004	8003	-	-	STRING	_	Е	Пароль уровня 3 или 4	
8005	8004						 Для уровня 4, значение по умолчанию = '0000' = 0x30303030 	
							 Для уровня 3, значение по умолчанию = '3333' = 0x33333333 	
8006	8005	-	-	UINT	-	E	Запуск/остановка синхронизации = 1	

Power Flow Sign Configuration (Конфигурирование знака мощности) Пользователь может прочитать конфигурацию знака мощности в регистре 3316. См. Знак мощности, стр. 74.

Чтобы настроить параметры знака мощности, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	47240	Е	Код команды = 47240
8001	8000	-	_	UINT	12	Е	Число параметров (байты) = 12
8002	8001	-	_	UINT	5121	Е	Место назначения = 5121 (0х1401)
8003	8002	-	_	UINT	1	Е	1
8004 8005	8003 8004	-	_	STRING	_	Е	Пароль уровня 4 (значение по умолчанию = '0000' = 0x30303030)
8006	8005	-	_	UINT	01	Е	Знак мощности 0 = активная мощность идёт сверху вниз (значение по умолчанию). 1 = активная мощность идёт снизу вверх.

Power Factor Sign Configuration (Конфигурирование знака коэффициента мощности) Пользователь может прочитать конфигурацию знака коэффициента мощности в регистре 3318. См. *Знак коэффициента мощности, стр. 81*.

Чтобы настроить параметры знака коэффициента мощности, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	_	UINT	47241	Е	Код команды = 47241
8001	8000	-	_	UINT	12	Е	Число параметров (байты) = 12
8002	8001	-	_	UINT	5121	Е	Место назначения = 5121 (0х1401)
8003	8002	-	_	UINT	1	Е	1
8004	8003	-	_	STRING	_	Е	Пароль уровня 4 (значение по умолчанию = '0000' = 0х30303030)
8005	8004						
8006	8005	-	_	UINT	02	Е	Правило знака, применяемой к коэффициенту мощности и
							коэффициенту мощности основной гармоники (cos φ)
							0 = правило МЭК
							2 = правило IEEE (по умолчанию)

Energy Accumulation Mode Configuration (Конфигурирование метода суммирования энергии) Пользователь может прочитать конфигурацию метода суммирования энергии в регистре 3324. См. *Метод суммирования энергии, стр. 81*.

Чтобы настроить параметры метода суммирования энергии, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	X	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	47242	E	Код команды = 47242
8001	8000	-	_	UINT	12	E	Число параметров (байты) = 12
8002	8001	-	-	UINT	5121	121 Е Место назначения = 5121 (0х1401)	
8003	8002	Ī-	_	UINT	1	1 E 1	
8004 8005	8003 8004	-	_	STRING	_	Е	Пароль уровня 4 (значение по умолчанию = '0000' = 0х30303030)
8006	8005	-	_	UINT	01	E	Метод суммирования энергии 0 = абсолютный метод (по умолчанию) 1 = относительный метод

Current Demand Configuration (Конфигурирование потребления тока) Пользователь может прочитать длительность временного интервала (окна) расчёта потребления тока в регистре 3352. См. *Интервал потребления, стр. 81*.

Пользователь может прочитать параметры потребления тока в регистрах 2200 - 2207. См. *Потребление тока, стр. 56*. Чтобы запустить расчёт потребления тока, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание	
			изм.					
8000	7999	-	_	UINT	47243	Е	Код команды = 47243	
8001	8000	-	_	UINT	12	Е	Число параметров (байты) = 12	
8002	8001	-	_	UINT	5121	Е	Место назначения = 5121 (0х1401)	
8003	8002	-	_	UINT	1	Е	1	
8004 8005	8003 8004	-	-	STRING	 – Е Пароль уровня 4 (значение по умолчанию = '0000' = 0x 		Пароль уровня 4 (значение по умолчанию = '0000' = 0х30303030)	
8006	8005	-	мин	UINT	560	Е	Длительность временного интервала (окна) расчёта потреблен тока, регулируемая с шагом 1. Значение по умолчанию: 15 мин (скользящий интервал)	

Power Demand Configuration (Конфигурирование потребления мощности) Пользователь может прочитать метод расчёта потребления мощности в регистрах 3354 - 3355. См. *Интервал потребления, стр. 81*.

Пользователь может прочитать параметры потребления мощности в регистрах 2224 - 2237. См. *Потребление активной мощности, стр. 56.*

Чтобы запустить расчёт потребления мощности, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	47244	47244 E Код команды = 47244	
8001	8000	<u> </u>	_	UINT	14	E	Число параметров (байты) = 14
8002	8001	-	-	UINT	5121	E	Место назначения = 5121 (0х1401)
8003	8002	-	_	UINT	1	E	1
8004	8003	-	_	STRING	_	Е	Пароль уровня 4 (значение по умолчанию = '0000' = 0x30303030)
8005	8004						
8006	8005	-	Min	UINT	05	Е	Метод расчёта потребления мощности (тип временного
							интервала)
							0 = скользящий интервал
							2 = постоянный интервал
							5 = интервал, синхронизируемый по системе передачи данных
							Значение по умолчанию: 0 (скользящий интервал).
8007	8006	-	Min	UINT	560	Е Длительность временного интервала расчёта потреблени	
							мощности, регулируемая с шагом 1 мин.
							Значение по умолчанию: 15 мин.

Set Up Nominal Voltage Vn Display (Настройка индикации номинального напряжения Vn) Пользователь может прочитать номинальное напряжение в регистре 9616. См. *Номинальное напряжение, стр. 81*. Чтобы настроить параметры индикации номинального напряжения Vn, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	X	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	47245 E Код команды = 47245		Код команды = 47245
8001	8000	-	-	UINT	12 Е Число параметров (байты) = 12		Число параметров (байты) = 12
8002	8001	-	-	UINT	5121 Е Место назначения = 5121 (0х1401)		Место назначения = 5121 (0х1401)
8003	8002	-	_	UINT	1	E	1
8004	8003	-	_	STRING	_	Е	Пароль уровня 4 (значение по умолчанию =
8005	8004						'0000' = 0x30303030)
8006	8005	-	В	UINT	065535	E Номинальное напряжение Vn (значение по умолчанию = 4	

Donnйes du BSCM

4

Общие сведения

Введение

В данном разделе описаны данные модуля BSCM (Breaker Status and Control Module = модуль состояний и управления автоматического выключателя).

Содержание данного раздела

Данный раздел содержит следующие подразделы:

Подраздел	Тема	Страница
4.1	Регистры модуля BSCM	108
4.2	Команды модуля BSCM	114

4.1 Регистры модуля BSCM

Общие сведения

Введение

В данном подразделе описаны регистры модуля BSCM.

Содержание данного подраздела Данный подраздел содержит следующие темы:

Тема						
Идентификация	109					
Состояние						
Индикаторы техобслуживания						
Хронологический протокол событий	112					

Идентификация

Идентификация Square D

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
551	550	Ч	-	ı	UINT	15149	A/E	Идентификация Square D = 15149 для модуля BSCM

Серийный номер

Серийный номер модуля BSCM состоит максимум из 11 буквенно-цифровых символов и имеет следующий формат: PPYYWWDnnnn.

- PP = код завода
- YY = год изготовления (05...99)
- WW = неделя изготовления (01...53)
- D = день изготовления (1...7)
- nnnn = порядковый номер (0001...9999)

Для чтения серийного номера модуля BSCM необходим запрос на операцию чтения блока из 6 регистров (см. *Чтение хронологического протокола*, *стр.* 44).

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
552	551	Ч	-	_	STRING	-	A/E	'PP'
553	552	Ч	-	-	STRING	0599	A/E	'YY'
554	553	Ч	-	_	STRING	0153	A/E	'WW'
555	554	Ч	-	_	STRING	17	A/E	'Dn'
556	555	Ч	-	_	STRING	0099	A/E	'nn'
557	556	Ч	-	-	STRING	0199	A/E	'n' (нулевой символ заканчивает серийный номер)

Состояние

Состояние автоматического выключателя

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Bit	Описание	
563	562	Ч	-	-	UINT	-	A/E	-	Регистр состояния автоматического выключателя	
							A/E	0	Состояние входа ОF 0 = выключатель отключен 1 = выключатель включен	
								A/E	1	Состояние входа SD 0 = выключатель не отключился аварийно 1 = выключатель отключился аварийно
							A/E	2	Состояние входа SDE 0 = выключатель не отключился на электрическое повреждение 1 = выключатель отключился на электрическое повреждение	
							-	315	Зарезервировано (принудительно установлено на 0)	

Состояние коммуникационного мотораредуктора

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Bit	Описание
564	563	Ч	-	-	UINT	-	A/E	_	Регистр состояния коммуникационного мотора- редуктора
							A/E	0	Мотор-редуктор 0 = отсутствует 1 = присутствует
							A/E	1	Ручной/автоматический режим управления 0 = manu (ручной) 1 = auto (автоматический)
							A/E	2	Последняя команда 0 = последняя команда успешно выполнена 1 = последняя команда не выполнена
							A/E	3	Активация автоматического возврата в исходное положение 0 = автоматический возврат в исходное положение не активирован 1 = автоматический возврат в исходное положение активирован
							A/E	4	Активация возврата в исходное положение после отключения выключателя на электрическое повреждение 0 = возврат в исходное положение не активирован, если выключатель отключился на электрическое повреждение 1 = возврат в исходное положение активирован, даже если выключатель отключился на электрическое повреждение
							_	515	Зарезервировано (принудительно установлено на 0

Индикаторы техобслуживания

Общее описание

Модуль BSCM снабжён 7 счётчиками, помогающими управлять автоматическим выключателем Compact NSX.

Счётчики модуля BSCM имеют следующие свойства:

- Во избежание потери данных в случае отключения питания все счётчики сохраняются в энергонезависимой памяти.
- Накопительный счётчик коммутаций (ОF) доступен только для чтения. Он прекращает счёт по достижении максимального значения 4 294 967 295.
- Пользователь может предварительно настроить все счётчики (за исключением накопительного счётчика коммутаций) на любой значение между 0 и 65535. Счётчики прекращают счёт по достижении максимального значения 65535.
- Счётчик коммутаций и счётчик команд на включение выключателя имеют функцию пороговой величины. Пользователь
 может настроить порог на любое значение между 0 и 65534. Значение по умолчанию: 5000. По достижении порога
 выдаётся аварийно-предупредительный сигнал.

Compteurs

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
571 572	570 571	Ч	1	-	UDINT	04 294 967 295	A/E	Накопительный счётчик коммутаций (без возможности сброса)
573	572	4/3	1	-	UINT	065535	A/E	Счётчик коммутаций (с возможностью сброса)
574	573	4/3	1	-	UINT	065535	A/E	Счётчик аварийных отключений (SD)
575	574	4/3	1	-	UINT	065535	A/E	Счётчик электрических повреждений (SDE)
576	575	4/3	1	_	UINT	065535	A/E	Счётчик команд на отключение выключателя
577	576	4/3	1	_	UINT	065535	A/E	Счётчик команд на включение выключателя
578	577	4/3	1	-	UINT	065535	A/E	Счётчик команд на возврат выключателя в исходное положение
579	578	-	-	_	_	_	-	Зарезервировано
580	579	-	-	-	-	-	-	Зарезервировано
581	580	4/3	1	-	UINT	065535	A/E	Порог счётчика коммутаций. Значение по умолчанию: 5000
582	581	4/3	1	-	UINT	065535	A/E	Порог счётчика команд на включение выключателя. Значение по умолчанию: 5000

Хронологический протокол событий

Общее описание

Регистры хронологического протокола модуля BSCM описывают 10 последних произошедших событий. Формат событий модуля BSCM соответствует серии из 10 записей. Каждая запись состоит из 5 регистров, описывающих одно событие модуля BSCM.

Для чтения n последних событий модуля BSCM необходим запрос на операцию чтения блока из 5 ? (n) регистров, где 5 — число регистров для каждой записи событий. Чтение начинается в начале операции чтения блока (см. *Чтение хронологического протокола, стр. 44*).

Например, для чтения 3 последних записей событий модуля BSCM формата хронологического протокола событий BSCM необходим запрос на операцию чтения блока из 5 x 3 = 15 регистров:

- Первые 5 регистров описывают первую запись события BSCM (самое последнее событие).
- Последующие 5 регистров описывают вторую запись события BSCM.
- Последние 5 регистров описывают третью запись события BSCM.

Регистр	Адрес	Описание						
602	601	Счётчик событий						
603607	602606	апись события 1 (самое последнее событие)						
608612	607611	Запись события 2						
613617	612616	Запись события 3						
618622	617621	Запись события 4						
623627	622626	Запись события 5						
628632	627631	Запись события 6						
633637	632636	Запись события 7						
638642	637641	Запись события 8						
643647	642646	Запись события 9						
648652	647651	Запись события10 (самое первое событие)						

Счётчик событий

Содержимое счётчика увеличивается каждый раз при регистрации нового события. Если, по достижении счётчиком максимального значения 65535 регистрируется новое событие, содержимое счётчика обнуляется.

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
602	601	Ч	1	_	UINT	065535	A/E	Счётчик событий BSCM

Запись событий

Порядок и описание регистров записей событий такие же, как у записи события 1:

Событие	Событие 1 (самое последнее событие)											
Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание				
603	602	Ч	1	-	UINT	065535	A/E	Идентификатор события BSCM				
604 605	603 604	Ч	1	С	UDINT	04 294 967 295	A/E	Дата события в количестве секунд с 01.01.2000				
606	605	Ч	1	МС	UINT	065535	A/E	Дополнение в мс с уточнением даты. См. <i>Формат даты, стр. 40</i> .				
607	606	Ч	1	-	UINT	12	A/E	Состояние события 1 = появление события 2 = завершение события				

Идентификатор событий

Идентификатор событий	Событие
1024	Изменение состояния контакта SD (появление = аварийное отключение)
1025	Достижение порога счётчиком коммутаций
1026	Достижение порога счётчиком команд на включение
1027	STOP (внутренний отказ)
1028	ERROR (внутренний отказ)
1029	Изменение состояния контакта ОF (появление = коммутация)
1030	Изменение состояния контакта SDE (появление = электрическое повреждение)
1031	Ручной/автоматический режим (появление = переключение режима)
1040	Команда на отключение
1041	Команда на включение
1042	Команда на возврат в исходное положение

Примечание: В случае события STOP, необходимо обязательно заменить модуль BSCM. В случае события ERROR, рекомендуется заменить модуль BSCM (основные защитные функции ещё действуют, однако замена модуля BSCM предпочтительна).

4.2 Команды модуля **BSCM**

Общие сведения

Введение

В данном подразделе описаны команды модуля BSCM.

Содержание данного подраздела Данный подраздел содержит следующие темы:

Тема	Страница
Команды и коды ошибки	115
Команды управления автоматическим выключателем	116
Команды счётчиков	118

Команды и коды ошибки

Перечень команд

Нижеприведённая таблица содержит команды модуля BSCM, соответствующие коды команд и уровни пароля. Процедура редактирования команды изложена в пункте *Выполнение команды, стр. 33*.

Команда	Код команды	Уровень пароля
Open circuit breaker (Отключение автоматического выключателя)	904	Уровень 3 или 4
Close circuit breaker (Включение автоматического выключателя)	905	Уровень 3 или 4
Reset circuit breaker (Возврат автоматического выключателя в исходное положение)	906	Уровень 3 или 4
Enable/disable automatic reset (Активация/дезактивация автоматического возврата в исходное положение)	42636	Уровень 4
Enable/disable reset even if SDE (Активация/дезактивация возврата в исходное положение после отключения на электрическое повреждение)	42637	Уровень 4
Preset counters (Предварительная настройка счётчиков)	42638	Уровень 4
Set up thresholds (Настройка порогов)	42639	Уровень 4

Коды ошибки

Кроме кодов ошибки общего характера, команды модуля BSCM генерируют следующие коды ошибки, возвращаемые в регистр 8021:

Код ошибки (десятичный)	Описание
4363	Модуль BSCM в нерабочем состоянии
4503	Автоматический выключатель аварийно отключился. Он должен быть возвращён в исходное положение до подачи команды
4504	Автоматический выключатель уже включен
4505	Автоматический выключатель уже выключен
4506	Автоматический выключатель уже возращён в исходное положение
4507	Орган управления находится в ручном режиме. Дистанционные команды не разрешены
4508	Орган управления отсутствует
4510	Предыдущая команда ещё находится в процессе выполнения
4511	Команда на возврат в исходное положение запрещена при настройке отключения на электрическое повреждение

Любой другой положительный код ошибки означает внутреннюю ошибку.

Команды управления автоматическим выключателем

Отключение автоматического выключателя

Чтобы отключить автоматический выключатель, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	904	A/E	Код команды = 904
8001	8000	-	_	UINT	10	A/E	Число параметров (байты) = 10
8002	8001	-	_	UINT	4353	A/E	Место назначения = 4353 (0х1101)
8003	8002	-	_	UINT	1	A/E	1
8004 8005	8003 8004	-	_	STRING	_	A/E	Пароль уровня 3 или 4
							 Для уровня 4, значение по умолчанию = '0000' = 0x30303030
							 Для уровня 3, значение по умолчанию = '3333' = 0x333333333

Включение выключателя

Чтобы включить автоматический выключатель, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	_	-	UINT	905	A/E	Код команды = 905
8001	8000	-	_	UINT	10	A/E	Число параметров (байты) = 10
8002	8001	_	_	UINT	4353	A/E	Место назначения = 4353 (0х1101)
8003	8002	_	_	UINT	1	A/E	1
8004 8005	8003 8004	_	_	STRING	_	A/E	Пароль уровня 3 или 4
							 Для уровня 4, значение по умолчанию =
							'0000' = 0x30303030
							 Для уровня 3, значение по умолчанию =
							'3333' = 0x33333333

Возврат автоматического выключателя в исходное положение Чтобы возвратить автоматический выключатель в исходное положение, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	906	A/E	Код команды = 906
8001	8000	-	-	UINT	10	A/E	Число параметров (байты) = 10
8002	8001	_	_	UINT	4353	A/E	Место назначения = 4353 (0х1101)
8003	8002	-	_	UINT	1	A/E	1
8004 8005	8003 8004	-	_	STRING	_	A/E	Пароль уровня 3 или 4
							 Для уровня 4, значение по умолчанию = '0000' = 0x30303030
							● Для уровня 3, значение по умолчанию = '3333' = 0x333333333

Активация/ дезактивация автоматического возврата в исходное положение Пользователь может прочитать параметры автоматического возврата в исходное положение в регистре 564 (бит 3). См. *Состояние коммуникационного мотора-редуктора, стр. 110.*

Чтобы активировать/дезактивировать автоматический возврат в исходное положение, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	X	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	42636	A/E	Код команды = 42636
8001	8000	-	-	UINT	12	A/E	Число параметров (байты) = 12
8002	8001	-	_	UINT	4353	A/E	Место назначения = 4353 (0х1101)
8003	8002	-	_	UINT	1	A/E	1
8004 8005	8003 8004	-	_	STRING	_	A/E	Для уровня 4, значение по умолчанию = '0000' = 0x30303030)
8006	8005	-	_	UINT	01	A/E	0 = автоматический возврат в исходное положение не активирован 1 = автоматический возврат в исходное положение активирован

Активация/ дезактивация возврата в исходное положение после отключения на электрическое повреждение Пользователь может прочитать параметры возврата в исходное положение в регистре 564 (бит 4). См. Состояние коммуникационного мотора-редуктора, стр. 110.

Чтобы активировать/дезактивировать возврат в исходное положение после отключения на электрическое повреждение, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	X	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	42637	A/E	Код команды = 42637
8001	8000	-	-	UINT	12	A/E	Число параметров (байты) = 12
8002	8001	-	-	UINT	4353	A/E	Место назначения = 4353 (0х1101)
8003	8002	-	_	UINT	1	A/E	1
8004 8005	8003 8004	-	-	STRING	_	A/E	Для уровня 4, значение по умолчанию = '0000' = 0х30303030)
8006	8005	_	_	UINT	01	A/E	0 = возврат в исходное положение не активирован, если выключатель отключился на электрическое повреждение 1 = возврат в исходное положение активирован, даже если выключатель отключился на электрическое повреждение

Команды счётчиков

Preset Counters (Предварительная настройка счётчиков) Пользователь может прочитать значения счётчиков в регистрах 571 - 578. См. Счётчики, стр. 111.

Чтобы выполнить предварительную настройку счётчиков, пользователь должен настроить командные регистры следующим образом:

Регистр	Адрес	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8000	7999	-	-	UINT	42638	A/E	Код команды = 42638
8001	8000	-	-	UINT	22	A/E	Число параметров (байты) = 22
8002	8001	-	-	UINT	4353	A/E	Место назначения = 4353 (0х1101)
8003	8002	-	_	UINT	1	A/E	1
8004 8005	8003 8004	-	_	STRING	-	A/E	Пароль уровня 4 (значение по умолчанию = '0000' = 0x30303030)
8006	8005	1	-	UINT	065535	A/E	065534 = предварительно настроенное значение счётчика коммутаций (ОГ) 65535 = предварительная настройка счётчика коммутаций не выполняется
8007	8006	1	_	UINT	065535	A/E	065534 = предварительно настроенное значение счётчика аварийных отключений (SD) 65535 = предварительная настройка счётчика аварийных отключений не выполняется
8008	8007	1	_	UINT	065535	A/E	065534 = предварительно настроенное значение счётчика электрических повреждений (SDE) 65535 = предварительная настройка счётчика электрических повреждений не выполняется
8009	8008	1	_	UINT	065535	A/E	065534 = предварительно настроенное значение счётчика команд на отключение выключателя 65535 = предварительная настройка счётчика команд на отключение выключателя не выполняется
8010	8009	1	_	UINT	065535	A/E	065534 = предварительно настроенное значение счётчика команд на включение выключателя 65535 = предварительная настройка счётчика команд на включение выключателя не выполняется
8011	8010	1	-	UINT	065535	A/E	065534 = предварительно настроенное значение счётчика команд на возврат выключателя в исходное положение 65535 = предварительная настройка счётчика команд на возврат выключателя в исходное положение не выполняется

Set Up Thresholds (Настройка порогов)

Пользователь может прочитать значения порогов в регистрах 581 - 582. См. Счётчики, стр. 111.

Чтобы настроить пороги, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
8000	7999	-	-	UINT	42639	A/E	Код команды = 42639
8001	8000	-	_	UINT	22	A/E	Число параметров (байты) = 22
8002	8001	-	-	UINT	4353	A/E	Место назначения = 4353 (0х1101)
8003	8002	-	_	UINT	1	A/E	1
8004 8005	8003 8004	-	_	STRING	_	A/E	Пароль уровня 4 (значение по умолчанию = '0000' = 0х30303030)
8006	8005	1	-	UINT	065535	A/E	065534 = значение порога счётчика коммутаций (OF) 65535 = порог счётчика коммутаций не изменяется
8007	8006	1	_	UINT	65535	A/E	65535 (у счётчика аварийных отключений (SD) нет порога)
8008	8007	1	_	UINT	65535	A/E	65535 (у счётчика электрических повреждений (SDE) нет порога)
8009	8008	1	_	UINT	65535	A/E	65535 (у счётчика команд на отключение выключателя нет порога)
8010	8009	1	_	UINT	065535	A/E	065534 = значение порога счётчика команд на включение выключателя 65535 = порог счётчика команд на включение выключателя не изменяется
8011	8010	1	_	UINT	65535	A/E	65535 (у счётчика команд на возврат выключателя в исходное положение нет порога)

Данные модуля интерфейса Modbus

5

Общие сведения

Введение

В данном разделе описаны данные модуля интерфейса Modbus.

Содержание данного раздела Данный раздел содержит следующие подразделы:

Подраздел	Тема	Страница
5.1	Регистры модуля интерфейса Modbus	122
5.2	Команды модуля интерфейса Modbus	126
5.3	Профиль связи	131

121

5.1 Регистры модуля интерфейса Modbus

Общие сведения

Введение

В данном подразделе описаны регистры модуля интерфейса Modbus.

Содержание данного подраздела Данный подраздел содержит следующие темы:

Тема	Страница
Идентификация	123
Параметры сети Modbus	124

Идентификация

Версия микропрограммного обеспечения Версия микропрограммного обеспечения модуля интерфейса Modbus, начинающаяся символом В, имеет следующий формат: VX.Y.Z, заканчивающийся нулевым символом (0x00). Версия микропрограммного обеспечения начинается в регистре 11776 и имеет максимальную длину 7 регистров.

Х, Y и Z заключены в диапазоне 1...999.

Для чтения версии микропрограммного обеспечения модуля интерфейса Modbus необходим запрос на операцию чтения блока из 7 регистров (см. *Чтение хронологического протокола*, *стр. 44*).

Серийный номер

Серийный номер модуля интерфейса Modbus состоит максимум из 11 буквенно-цифровых символов и имеет следующий формат: PPYYWWDnnnn.

- РР = код завода
- YY = год изготовления (05...99)
- WW = неделя изготовления (01...53)
- D = день изготовления (1...7)
- nnnn = порядковый номер (0001...9999)

Для чтения серийного номера модуля интерфейса Modbus необходим запрос на операцию чтения блока из 6 регистров (см. *Чтение хронологического протокола, стр. 44*).

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
11784	11783	Ч	-	_	STRING	_	A/E	'PP'
11785	11784	Ч	-	-	STRING	0599	A/E	'YY'
11786	11785	Ч	-	-	STRING	0153	A/E	'WW'
11787	11786	Ч	-	-	STRING	17	A/E	'Dn'
11788	11787	Ч	-	_	STRING	0099	A/E	'nn'
11789	11788	Ч	-	_	STRING	0099	A/E	'n' (нулевой символ заканчивает серийный номер)

Идентификация Square D

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
11901	11900	Ч	-	_	UINT	_	A/E	Идентификация Square D = 15146 для модуля интерфейса
								Modbus

Версия аппаратного оборудования

Регистр	Адрес	4/3	Х	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
11903	11902	Ч	1	_	STRING	_	A/E	Версия аппаратного оборудования модуля интерфейса
11906	11905							Modbus

Параметры сети Modbus

Идентификация блока IMU

Блок IMU (Intelligent Modular Unit — интеллектуальный модульный блок) представляет собой совокупность модулей (расцепитель Micrologic, модуль, BSCM, щитовой индикатор FDM121), присоединённых к модулю интерфейса Modbus. Эти регистры, если они не запрограммированы, возвращают 0 (0х0000). Наименование блока IMU, ограниченное первыми 12 символами, отображается на щитовом индикаторе FDM121.

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
11801 11823	11800 11822	Ч	-	-	STRING	_	A/E	Наименование блока IMU = до 47 символов ASCII, заканчивающихся нулевым символом 0х00
11846 11868	11845 11867	Ч	_	_	STRING	_	A/E	Местоположение блока IMU = до 47 символов ASCII, заканчивающихся нулевым символом 0х00

Положение переключателя блокировки Modbus

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
11891	11890	Ч	_	_	UINT	13	A/E	Положение переключателя блокировки Modbus 1 = переключатель блокировки Modbus в «запертом» положении 3 = переключатель блокировки Modbus в «открытом» положении

Состояние автоматического определения скорости

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
12399	12398	Ч	-	-	UINT	01	A/E	Состояние автоматического определения скорости 0 = автоматическое определение скорости дезактивировано 1 = автоматическое определение скорости активировано (по умолчанию)

Modbus-адрес модуля интерфейса Modbus

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
12400	12399	Ч	_	_	UINT	199	A/E	Modbus-адрес модуля интерфейса Modbus

Контроль чётности Modbus

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
12401	12400	Ч	-	-	UINT	13	A/E	Контроль чётности Modbus
								1 = отсутствие контроля чётности
								2 = проверка на чётность (по умолчанию)
								3 = проверка на нечётность

Скорость передачи данных Modbus

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
12402	12401	Ч	_	-	UINT	58	A/E	Dйbit en бод Modbus 5 = 4800 бод 6 = 9600 бод 7 = 19200 бод (по умолчанию) 8 = 38400 бод

Nombre de bits d'arrkt

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
12403	12402	Ч	_	-	UINT	05	A/E	Число стоповых бит 0 = без изменений 1 = стандарт Modbus 2 = 1/2 стопового бита 3 = 1 стоповый бит 4 = 1 и 1/2 стопового бита 5 = 2 стоповых бита

5.2 Команды модуля интерфейса Modbus

Общие сведения

Введение

В данном подразделе описаны команды модуля интерфейса Modbus.

Содержание данного подраздела Данный подраздел содержит следующие темы:

Тема	Страница						
Перечень команд модуля интерфейса Modbus							
Команды модуля интерфейса Modbus	128						

Перечень команд модуля интерфейса Modbus

Перечень команд

Нижеприведённая таблица содержит команды модуля интерфейса Modbus, соответствующие коды команд и уровни пароля. Процедура редактирования команды изложена в пункте *Выполнение команды, стр. 33*.

Команда	Код команды	Уровень пароля
Get current time (Получение текущего времени)	768	Пароль не требуется
Set absolute time (Настройка абсолютного времени)	769	Пароль не требуется
Read IMU name and location (Чтение наименования и местоположения блока IMU)	1024	4
Write IMU name and location (Запись наименования и местоположения блока IMU)	1032	4

Команды модуля интерфейса Modbus

Get Current Time (Получение текущего времени)

Команда на получение текущего времени не имеет аппаратной защиты. Когда стрелка переключателя блокировки (расположенного на передней панели модуля интерфейса Modbus) указывает на запертый замок, команда на получение текущего времени тем не менее активирована.

Чтобы получить текущее время для всех модулей, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	768	A/E	Код команды = 768
8001	8000	-	-	UINT	10	A/E	Число параметров (байты) = 10
8002	8001	-	-	UINT	768	A/E	Место назначения = 768 (0х0300)
8003	8002	-	-	UINT	0	A/E	0
8004 8005	8003 8004	-	_	STRING	0	A/E	Пароль = 0 (загрузка 0х0000 в регистры 8004 и 8005)

Set Absolute Time (Настройка абсолютного времени) Команда настройки абсолютного времени не имеет аппаратной защиты. Когда стрелка переключателя блокировки (расположенного на передней панели модуля интерфейса Modbus) указывает на запертый замок, команда настройки абсолютного времени тем не менее активирована.

Чтобы настроить абсолютное время для всех модулей блока IMU, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	х	Ед. изм.	Тип	Диапаз он	A/E	Описание
8000	7999	-	_	UINT	769	A/E	Код команды = 769
8001	8000	-	-	UINT	18	A/E	Число параметров (байты) = 18
8002	8001	-	_	UINT	768	A/E	Место назначения = 768 (0x0300)
8003	8002	-	_	UINT	0	A/E	0
8004 8005	8003 8004	-	-	STRING	0	A/E	Пароль = 0 (загрузка 0х0000 в регистры 8004 и 8005)
8006	8005	-	_	UINT	-	A/E	Старшие значащие биты (MSB) = месяц (112) Младшие значащие биты (LSB) = день месяца (131)
8007	8006	-	_	UINT	_	A/E	MSB = год (099, 0 означает 2000 год) LSB = час (023)
8008	8007	-	_	UINT	-	A/E	MSB = минута (059) LSB = секунда (059)
8009	8008	-	мс	UINT	0999	A/E	Миллисекунды (0999)

В случае потери питания 24 В пост. тока, счётчик даты и времени сбрасывается и снова начинает отсчёт с 1 января 2000 года. Поэтому после восстановления питания 24 В пост. тока следует обязательно настроить абсолютное время для всех модулей блока IMU. Кроме того, учитывая временное отклонение каждого модуля IMU, необходимо обязательно регулярно настраивать абсолютное время всех модулей IMU. Рекомендуемая периодичность: раз в два часа.

Read IMU Name and Location (Чтение наименования и местоположения блока IMU) Пользователь может прочитать наименование и местоположение блока IMU в регистрах 11801 - 11861. См. *Идентификация блока IMU, стр. 124*.

Наименование блока IMU, ограниченное первыми 14 символами, отображается на щитовом индикаторе FDM121.

Чтобы прочитать наименование и местоположение блока IMU, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед.	Тип	Диапазон	A/E	Описание
			изм.				
8000	7999	-	-	UINT	1024	A/E	Код команды = 1024
8001	8000	-	-	UINT	16	A/E	Число параметров (байты) = 16
8002	8001	-	-	UINT	768	A/E	Место назначения = 768 (0x0300)
8003	8002	-	-	UINT	1	A/E	0
8004 8005	8003 8004	-	_	STRING	_	A/E	Пароль = 0 (загрузка 0х0000 в регистры 8004 и 8005)
8006 8007	8005 8006	_	-	UDINT	-	A/E	17039489 = чтение наименования IMU (загрузка 0х0104 в регистр 8006, 0х0081 в 8007) 17039490 = чтение местоположения IMU (загрузка 0х0104 в регистр 8006, 0х0082 в 8007)
8008	8007	-	_	UINT	2048	A/E	2048

Ответ на эту команду имеет следующий формат:

Регистр	Адрес	X	Ед. изм.	Тип	Диапазон	A/E	Описание
8021	8020	-	-	UINT	-	A/E	Состояние команды 0 = команда успешно выполнена В ином случае, не выполнена
8022	8021	-	-	UINT	_	A/E	Число возвращённых байтов (0, если команда не выполнена)
8003	8022	_	_	STRING	-	A/E	Если команда выполнена MSB = первый символ наименования или местоположения блока IMU LSB = второй символ наименования или местоположения блока IMU
		_	_	STRING	_	A/E	Зависит от длины наименования или местоположения блока IMU и заканчивается нулевым символом 0x00

Write IMU Name and Location (Запись наименования и местоположения блока IMU)

Пользователь может прочитать наименование и местоположение блока IMU в регистрах 11801 - 11861. См. *Идентификация блока IMU, стр. 124.*

Наименование блока IMU, ограниченное первыми 14 символами, отображается на щитовом индикаторе FDM121.

Чтобы записать местоположение и наименование блока IMU, пользователь должен сконфигурировать командные регистры следующим образом:

Регистр	Адрес	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
8000	7999	-	-	UINT	1032	A/E	Код команды = 1032
8001	8000	_	-	UINT	1832	A/E	Число параметров (байты) = зависит от длины наименования или местоположения блока IMU (до 47 символов ASCII, заканчивающихся нулевым символом 0x00)
8002	8001	-	-	UINT	768	A/E	Место назначения = 0 (0х0000)
8003	8002	-	-	UINT	1	A/E	1
8004 8005	8003 8004	_	-	STRING	-	A/E	Пароль уровня 4 (значение по умолчанию = '0000' = 0x3030303030)
8006 8007	8005 8006	_	_	UDINT	-	A/E	17039489 = настройка наименования блока IMU (загрузка 0х0104 в регистр 8006, 0х0081 в 8007) 17039490 = настройка местоположения блока IMU (загрузка 0х0104 в регистр 8006, 0х0082 в 8007)
8008	8006	-	-	UINT	2048	A/E	2048
8009	8008	_	-	STRING	-	A/E	MSB = первый символ наименования или местоположения блока IMU LSB = второй символ наименования или местоположения блока IMU
		_	-	STRING	-	A/E	Зависит от длины наименования или местоположения блока IMU и заканчивается нулевым символом 0x00

5.3 Профиль связи

Общие сведения

Введение

Модуль интерфейса Modbus содержит регистры профиля связи.

Содержание данного подраздела Данный подраздел содержит следующие темы:

Тема	Страница
Профиль связи	132
Регистры профиля связи	133

Профиль связи

Общее описание

Профиль связи — общая логическая категория, представленная в виде таблицы, в которой в удобной форме обобщены наиболее полезные сведения, касающиеся каждого модуля ULP.

Благодаря функции чтения блока пользователь имеет доступ к обновляемой информации, сконцентрированной в одном месте. Каждый модуль регулярно выдаёт данные, позволяющие обновлять структуру посредством текущих значений.

Профиль связи содержится в диапазоне регистров 12000 - 12180.

Примечание: профиль связи совместим с предыдущими версиями расцепителя Micrologic. По этой причине, данные, считываемые непосредственно в регистрах Modbus, организованы иначе, чем в профиле связи.

Период обновления

Период обновления измерений с коммуникационным интерфейсом Modbus:

- 1 секунда для следующих измерений:
 - напряжение и небаланс напряжения;
 - ток и небаланс тока;
 - активная, реактивная, полная мощность и мощность гармонических искажений;
 - реактивная мощность с гармониками;
 - коэффициент мощности и коэффициент мощности основной гармоники;
 - частота;
- 5 секунд для следующих измерений:
 - энергия;
 - минимальные и максимальные значения измерений в реальном времени;
 - THD (общее гармоническое искажение).

Регистры профиля связи

Достоверность данных

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
12000	11999	Ч	1	-	UINT	-	A/E	Показывает достоверность каждого бита в регистре
								состояния автоматического выключателя (12 001).

Регистр состояния автоматического выключателя

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Бит	Описание					
12001	12000	Ч	-	-	UINT	_	A/E	_	Регистр состояния автоматического выключателя					
							A/E	0	Состояние контактов выключателя (ОF) 0 = выключатель отключен 1 = выключатель включен					
							A/E	1	Аварийное отключение (SD) Для выключателя Compact: 0 = выключатель не отключился аварийно 1 = аварийное отключение на электрическое повреждение или отключение независимым расцепителем Для выключателя Masterpact: всегда 0					
								0 = выключатель не отключился на эли повреждение	1 = выключатель отключился на электрическое					
							A/E	3	Состояние пружины (СН) (только при наличии мотора-редуктора) Для выключателя Compact: всегда 0 Для выключателя Masterpact: 0 = пружина не взведена 1 = пружина взведена					
							A/E	4	Зарезервировано					
												A/E	5	Готовность к включению (PF) Для выключателя Compact: всегда 0 Для выключателя Masterpact: 0 = не готов к включению 1 = готов к включению
							A/E	6	Дифференциация Compact/Masterpact 0 = Compact 1 = Masterpact					
							_	714	Зарезервировано					
							A/E	15	Доступность данных Если этот бит установлен в 1, состояние выключателя не доступно					

Входные данные

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
12002	12001	Ч	_	-	UINT	_	-	Зарезервировано
12003	12002	Ч	_	-	UINT	_	-	Зарезервировано

Причина аварийного отключения

Регистр причины аварийного отключения содержит информацию о причине отключения базовыми защитами. Если один бит регистра установлен в 1, это значит, что произошло аварийное отключение, которое не было квитировано.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Бит	Описание
12004	120003	Ч	-	_	UINT	_	A/E	_	Причина отключения базовыми защитами
							A/E	0	Защита от перегрузок Ir
							A/E	1	Селективная токовая отсечка Isd
							A/E	2	Мгновенная токовая отсечка li
							A/E	3	Защита от замыканий на землю lg
							A/E	4	Дифференциальная защита (блок Vigi) I∆n
							A/E	5	Встроенная мгновенная токовая отсечка
							A/E	6	Внутренний отказ (STOP)
							A/E	7	Избыточный нагрев (только для Masterpact)
							A/E	8	Другая защита (см. регистр 12005, только для Masterpact)
							A/E	9	Мгновенная токовая отсечка с дифференциальной защитой расцепителя (блок Vigi) (только для Compact NSX)
							E	10	Защита электродвигателя от неполнофазных режимов (только для Compact NSX)
							E	11	Защита электродвигателя от блокировки ротора (только для Compact NSX)
							E	12	Защита электродвигателя от недогрузки (только для Compact NSX)
							E	13	Защита электродвигателя от затянутого пуска (только для Compact NSX)
							A/E	14	Защита от рефлексного отключения (только для Compact NSX)
							A/E	15	Если этот бит установлен в 1, биты 014 не достоверны
12005	12004	Ч	-	_	UINT	_	A/E	-	Причина отключения расширенными защитами
12006 12007	12005 12006	Ч	-	_	UINT	_	_	_	Зарезервировано

Превышение уставок

Регистры уставок аварийно-предупредительной сигнализации содержат информацию о превышении уставок базовых и расширенных защит. Как только уставка превышена, один бит устанавливается в 1, даже если выдержка времени ещё не истекла.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Бит	Описание
12008	12007	Ч	-	_	UINT	-	A/E	-	Превышение уставок базовой защиты
							A/E	0	Уставка тока срабатывания защиты от перегрузок
							-	114	Зарезервировано
							A/E	15	Если этот бит установлен в 1, биты 014 не достоверны
12009	12008	Ч	-	_	UINT	-	A/E	-	Превышение уставок расширенной защиты
							A/E	0	Небаланс токов
							A/E	1	Максимальный ток фазы 1
							A/E	2	Максимальный ток фазы 2
							A/E	3	Максимальный ток фазы 3
							A/E	4	Максимальный ток нейтрали
							A/E	5	Минимальное напряжение
							A/E	6	Максимальное напряжение
							A/E	7	Небаланс напряжений
							A/E	8	Максимальная мощность
							A/E	9	Обратная мощность
							A/E	10	Минимальная мощность
							A/E	11	Максимальная мощность
							A/E	12	Чередование фаз
							A/E	13	Разгрузка по току
							A/E	14	Разгрузка по мощности
							A/E	15	Если этот бит установлен в 1, биты 014 не достоверны
12010	12009	Ч	-	_	UINT	-	A/E	_	Продолжение предыдущего регистра
							A/E	0	Аварийно-предупредительный сигнал замыкания на землю
							A/E	1	Дифференциальная защита (блок Vigi)
			_	214	Зарезервировано				
							A/E	15	Если этот бит установлен в 1, биты 014 не достоверны

Аварийнопредупредительные сигналы

Регистры аварийно-предупредительных сигналов содержат информацию о предварительных аварийно-предупредительных сигналах и пользовательских аварийно-предупредительных сигналах. Как только сигнал становится активным, один бит устанавливается в 1.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Бит	Описание
12011	12010	Ч	-	_	UINT	-	A/E	-	Регистр предварительных аварийно- предупредительных сигналов (только для Compact NSX)
							A/E	0	Предварительный сигнал защиты от перегрузок (PAL Ir)
							A/E	1	Предварительный сигнал дифференциальной защиты (блок Vigi) (PAL I∆n)
						A/E	2	Предварительный сигнал защиты от замыканий на землю (PAL Ig)	
							_	314	Зарезервировано
			A/E	15	Если этот бит установлен в 1, биты 014 не достоверны				
12012 12011	12011	Ч	-	_	UINT	-	A/E	_	Регистр задаваемых пользователем аварийно- предупредительных сигналов (только для Compact NSX)
							A/E	0	Задаваемый пользователем сигнал 201
							A/E	1	Задаваемый пользователем сигнал 202
							A/E	2	Задаваемый пользователем сигнал 203
							A/E	3	Задаваемый пользователем сигнал 204
							A/E	4	Задаваемый пользователем сигнал 205
							A/E	5	Задаваемый пользователем сигнал 206
							A/E	6	Задаваемый пользователем сигнал 207
							A/E	7	Задаваемый пользователем сигнал 208
							A/E	8	Задаваемый пользователем сигнал 209
							A/E	9	Задаваемый пользователем сигнал 210
							-	1014	Зарезервировано
							A/E	15	Если этот бит установлен в 1, биты 014 не достоверны
12013 12015	12012 12014	Ч	-	-	UINT	-	-	_	Зарезервировано

Токи

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
12016	12015	Ч	1	Α	UINT	020xIn	A/E	Действующий ток фазы 1 : I1
12017	12016	Ч	1	Α	UINT	020xIn	A/E	Действующий ток фазы 2 : 12
12018	12017	Ч	1	Α	UINT	020xln	A/E	Действующий ток фазы 3 : 13
12019	12018	Ч	1	Α	UINT	020xIn	A/E	Действующий ток нейтрали : IN (1)
12020	12019	Ч	1	Α	UINT	020xln	A/E	Максимум I1, I2, I3, и IN
12021	12020	Ч	1	(2)	UINT	_	A/E	Ток замыкания на землю lg. Диапазон зависит от номинального тока ln.
12022	12021	Ч	1	(3)	UINT	_	A/E	Ток утечки на землю I∆n. Диапазон зависит от номинального тока In.

⁽¹⁾ Величина недоступна при использовании электродвигателя, а также если тип системы в регистре 3314 составляет 31 или 40. См. Тип системы, стр. 80.

⁽²⁾ Эта величина доступна только для расцепителей Micrologic 6.0, 6.2 и 6.3, для которых регистр 8740 возвращает соответственно 60, 62 и 63. Единицей измерения является А, если регистр 8740 возвращает 60. Единицей измерения является % Ід, если регистр 8740 возвращает 62 или 63.

⁽³⁾ Эта величина доступна только для расцепителей Micrologic 7.0, 7.2 и 7.3, для которых регистр 8740 возвращает соответственно 70, 72 и 73. Единицей измерения является мА, если регистр 8740 возвращает 70. Единицей измерения является % I?n, если регистр 8740 возвращает 72 или 73.

Максимальные значения токов

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
12023	12022	Ч	1	Α	UINT	020xln	A/E	Максимальный действующий ток фазы 1 : I1
12024	12023	Ч	1	Α	UINT	020xln	A/E	Максимальный действующий ток фазы 2 : 12
12025	12024	Ч	1	Α	UINT	020xln	A/E	Максимальный действующий ток фазы 3: 13
12026	12025	Ч	1	Α	UINT	020xln	A/E	Максимальный действующий ток нейтрали: IN (1)
12027	12026	Ч	1	Α	UINT	020xln	A/E	Максимальный действующий ток в 4 предыдущих регистрах
12028	12027	Ч	1	(2)	UINT	-	A/E	Максимальный ток замыкания на землю lg. Диапазон зависит от номинального тока ln.
12029	12028	Ч	1	(3)	UINT	-	A/E	Максимальный ток утечки на землю I∆n. Диапазон зависит от номинального тока In.

⁽¹⁾ Величина недоступна при использовании электродвигателя, а также если тип системы в регистре 3314 составляет 31 или 40. См. Тип системы, стр. 80.

Напряжения

Регистр = 0, если напряжение < 25 B.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
		1		_			-	
12030	12029	Ч	1	В	UINT	0850	E	Действующее линейное напряжение V12
12031	12030	Ч	1	В	UINT	0850	Е	Действующее линейное напряжение V23
12032	12031	Ч	1	В	UINT	0850	Е	Действующее линейное напряжение V31
12033	12032	Ч	1	В	UINT	0850	Е	Действующее фазное напряжение V1N (1)
12034	12033	Ч	1	В	UINT	0850	Е	Действующее фазное напряжение V2N (1)
12035	12034	Ч	1	В	UINT	0850	Е	Действующее фазное напряжение V3N (1)

⁽¹⁾ Величина недоступна при использовании электродвигателя, а также если тип системы в регистре 3314 составляет 30 или 31. См. *Тип системы, стр. 80*.

Частота

Если программное обеспечение не может вычислить частоту, оно возвращает Not Evaluated = 32768 (0x8000).

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
12036	12035	Ч	10	Гц	UINT	1504400	Е	Частота сети : F
12037	12036	Ч	10	Гц	UINT	1504000	E	Максимальное значение частоты сети

⁽²⁾ Эта величина доступна только для расцепителей Micrologic 6.0, 6.2 и 6.3, для которых регистр 8740 возвращает соответственно 60, 62 и 63. Единицей измерения является A, если регистр 8740 возвращает 60. Единицей измерения является % lg, если регистр 8740 возвращает 62 или 63.

⁽³⁾ Эта величина доступна только для расцепителей Micrologic 7.0, 7.2 и 7.3, для которых регистр 8740 возвращает соответственно 70, 72 и 73. Единицей измерения является мА, если регистр 8740 возвращает 70. Единицей измерения является % I?n, если регистр 8740 возвращает 72 или 73.

Мощность

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
12038	12037	Ч	(3)	кВ	UINT	-10000+10000	Е	Активная мощность фазы 1 : Р1(1) (2)
12039	12038	Ч	(3)	кВ	UINT	-10000+10000	Е	Активная мощность фазы 2 : Р2(1) (2)
12040	12039	Ч	(3)	кВ	UINT	-10000+10000	Е	Активная мощность фазы 3 : Р3 (1) (2)
12041	12040	Ч	(3)	кВ	UINT	-30000+30000	Е	Суммарная активная мощность : Ptot (2)
12042	12041	Ч	(3)	квар	UINT	-10000+10000	Е	Реактивная мощность фазы 1 : Q1(1) (2)
12043	12042	Ч	(3)	квар	UINT	-10000+10000	Е	Реактивная мощность фазы 2 : Q2(1) (2)
12044	12043	Ч	(3)	квар	UINT	-10000+10000	Е	Реактивная мощность фазы 3 : Q3(1) (2)
12045	12044	Ч	(3)	квар	UINT	-30000+30000	Е	Суммарная реактивная мощность : Qtot (2)
12046	12045	Ч	(3)	кВА	UINT	010000	Е	Полная мощность фазы 1 : S1 (1)
12047	12046	Ч	(3)	кВА	UINT	010000	Е	Полная мощность фазы 2 : S2 (1)
12048	12047	Ч	(3)	кВА	UINT	010000	Е	Полная мощность фазы 3 : S3 (1)
12049	12048	Ч	(3)	кВА	UINT	030000	Е	Суммарная полная мощность : Stot

⁽¹⁾ Величина недоступна при использовании электродвигателя, а также если тип системы в регистре 3314 составляет 31 или 40. См. Тип системы, стр. 80.

(2) Лака активной и реактивной мощности зависит от конфигурации регистра 3510. См. *Олак* 7 (3) Масштабный коэффициент зависит от типа расцепителя Micrologic: Если регистр 8740 возвращает 52, 53, 62, 63, 72 или 73, масштабный коэффициент равен 10. Если регистр 8740 возвращает 50, 60 или 70, масштабный коэффициент равен 1.

Энергия

Регистр	Адрес	4/3	Х	Ед. изм.	Тип	Диапазон	A/E	Описание
12050 12051	12049 12050	Ч	1	кВт∙ч	DINT	-1 999 999 999 +1 999 999 999	E	Активная энергия : Ер
12052 12053	12051 12052	Ч	1	квар∙ч	DINT	-1 999 999 999 +1 999 999 999	E	Реактивная энергия : Eq
12054 12055	12053 12054	Ч	1	кВт∙ч	UDINT	01 999 999 999	E	Потреблённая активная энергия : Epln
12056 12057	12055 12056	Ч	1	кВт∙ч	UDINT	01 999 999 999	E	Выданная активная энергия : EpOut
12058 12059	12057 12058	Ч	1	квар∙ч	UDINT	01 999 999 999	E	Потреблённая реактивная энергия : Eqln
12060 12061	12059 12060	Ч	1	квар∙ч	UDINT	01 999 999 999	E	Выданная реактивная энергия : EqOut
12062 12063	12061 12062	Ч	1	кВА∙ч	UDINT	01 999 999 999	E	Суммарная полная энергия : Es
12064 12065	12063 12064	Ч	1	кВт∙ч	UDINT	01 999 999 999	E	Потреблённая активная энергия (без возможности сброса) : Epin
12066 12067	12065 12066	Ч	1	кВт∙ч	UINT	01 999 999 999	E	Выданная активная энергия (без возможности сброса): Epout
12068 12079	12067 12078	_	-	-	-	-	_	Зарезервировано

⁽²⁾ Знак активной и реактивной мощности зависит от конфигурации регистра 3316. См. Знак мощности, стр. 80.

Потребление тока

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
12080	12079	Ч	1	Α	UINT	020xln	E	Потребление тока фазы 1 : I1 Dmd
12081	12080	Ч	1	Α	UINT	020xln	E	Потребление тока фазы 2 : I2 Dmd
12082	12081	Ч	1	Α	UINT	020xln	Е	Потребление тока фазы 3 : 13 Dmd
12083	12082	Ч	1	Α	UINT	020xln	Е	Потребление тока нейтрали : IN Dmd (1)

⁽¹⁾ Величина недоступна при использовании электродвигателя, а также если тип системы в регистре 3314 составляет 31 или 40. См. Тип системы, стр. 80.

Потребление мощности

Если окно фиксированного типа, это значение обновляется в конце интервала окна. Если окно скользящего типа, значение обновляется раз в 15 секунд.

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
12084	12083	Ч	(1)	кВ	UINT	-30000+30000	E	Потребление суммарной активной мощности : Ptot Dmd
12085	12084	Ч	(1)	квар	UINT	-30000+30000	E	Потребление суммарной реактивной мощности : Qtot Dmd
12086	12085	Ч	(1)	кВА	UINT	030000	E	Потребление суммарной полной мощности : Stot Dmd

⁽¹⁾ Масштабный коэффициент зависит от типа расцепителя Micrologic:

Если регистр 8740 возвращает 52, 53, 62, 63, 72 или 73, масштабный коэффициент равен 10.

Если регистр 8740 возвращает 50, 60 или 70, масштабный коэффициент равен 1.

Максимальные значения напряжения

Регистр = 0, если напряжение < 25 В.

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
12090	12089	Ч	1	В	UINT	0850	Е	Максимальное действующее линейное напряжение V12
12091	12090	Ч	1	В	UINT	0850	Е	Максимальное действующее линейное напряжение V23
12092	12091	Ч	1	В	UINT	0850	Е	Максимальное действующее линейное напряжение V31
12093	12092	Ч	1	В	UINT	0850	Е	Максимальное действующее фазное напряжение V1N (1)
12094	12093	Ч	1	В	UINT	0850	Е	Максимальное действующее фазное напряжение V2N (1)
12095	12094	Ч	1	В	UINT	0850	Е	Максимальное действующее фазное напряжение V3N (1)

⁽¹⁾ Величина недоступна при использовании электродвигателя, а также если тип системы в регистре 3314 составляет 30 или 31. См. Тип системы, стр. 80.

Коэффициент мощности

Знак коэффициента мощности и коэффициента мощности основной гармоники (cos j) зависит от конфигурации регистра 3318. См. *Знак коэффициента мощности, стр. 81*.

Регистр	Адрес	4/3	X	Ед.	Тип	Диапазон	A/E	Описание
				изм.				
12096	12095	Ч	(2)	-	INT	-100+100	E	Коэффициент мощности фазы 1 : PF1 (1)
12097	12096	Ч	(2)	-	INT	-100+100	E	Коэффициент мощности фазы 2 : PF2 (1)
12098	12097	Ч	(2)	-	INT	-100+100	Е	Коэффициент мощности фазы 3 : PF3 (1)
12099	12098	Ч	(2)	-	INT	-100+100	E	Суммарный коэффициент мощности : РF
12100	12099	Ч	(2)	-	INT	-100+100	E	Коэффициент мощности основной гармоники фазы 1 : cosφ1 (1)
12101	12100	Ч	(2)	-	INT	-100+100	E	Коэффициент мощности основной гармоники фазы 2 : cosφ2 (1)
12102	12101	Ч	(2)	-	INT	-100+100	E	Коэффициент мощности основной гармоники фазы 3 : cosφ3 (1)
12103	12102	Ч	(2)	-	INT	-100+100	Е	Суммарный коэффициент мощности основной гармоники : соѕф

⁽¹⁾ Величина недоступна при использовании электродвигателя, а также если тип системы в регистре 3314 составляет 30 или 31. См. *Тип системы, стр. 80.*

Если регистр 8740 возвращает 52, 53, 62, 63, 72 или 73, масштабный коэффициент равен 100.

Если регистр 8740 возвращает 50, 60 или 70, масштабный коэффициент равен 1000.

Общее гармоническое искажение (THD)

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
12104	12103	Ч	10	%	UINT	032766	Е	Общее гармоническое искажение V12 по отношению к основной частоте
12105	12104	Ч	10	%	UINT	032766	Е	Общее гармоническое искажение V23 по отношению к основной частоте
12106	12105	Ч	10	%	UINT	032766	Е	Общее гармоническое искажение V31 по отношению к основной частоте
12107	12106	Ч	10	%	UINT	032766	Е	Общее гармоническое искажение V1N по отношению к основной частоте (1)
12108	12109	Ч	10	%	UINT	032766	Е	Общее гармоническое искажение V2N по отношению к основной частоте (1)
12109	12108	Ч	10	%	UINT	032766	Е	Общее гармоническое искажение V3N по отношению к основной частоте (1)
12110	12109	Ч	10	%	UINT	032766	Е	Общее гармоническое искажение I1 по отношению к основной частоте
12111	12110	Ч	10	%	UINT	032766	Е	Общее гармоническое искажение I2 по отношению к основной частоте
12112	12111	Ч	10	%	UINT	032766	Е	Общее гармоническое искажение I3 по отношению к основной частоте

⁽¹⁾ Величина недоступна при использовании электродвигателя, а также если тип системы в регистре 3314 составляет 30 или 31. См. *Тип системы, стр. 80.*

⁽²⁾ Масштабный коэффициент зависит от типа расцепителя Micrologic:

Прочие параметры

Регистр	Адрес	4/3	X	Ед. изм.	Тип	Диапазон	A/E	Описание
12160	12159	Ч	1	-	UINT	032766	A/E	Счётчик аварийных отключений
12161	12160	Ч	1	_	UINT	032766	A/E	Счётчик аварийно-предупредительных сигналов с уровнем приоритета = 3 (высокий приоритет)
12162	12161	Ч	1	_	UINT	032766	A/E	Счётчик аварийно-предупредительных сигналов с уровнем приоритета = 2 (средний приоритет)
12163	12162	Ч	1	_	UINT	032766	A/E	Счётчик аварийно-предупредительных сигналов с уровнем приоритета = 1 (низкий приоритет)

Приложение

Общие сведения

Введение

В приложении перечислены в возрастающем порядке регистры Modbus и указаны их перекрёстные ссылки на соответствующие страницы Руководства.

Содержание данного приложения Данное приложение содержит следующие разделы:

Раздел	Название раздела	Страница
Α	Перекрёстные ссылки регистров Modbus	145

Перекрёстные ссылки регистров Modbus

Перекрёстные ссылки регистров Modbus

Общее описание

Нижеприведённая таблица содержит перекрёстные ссылки регистров Modbus, используемые модулями связи. Регистры пронумерованы в возрастающем порядке.

Таблица перекрёстных ссылок

Регистр	Адрес	Модуль	Переменная	Стр.
551	550	BSCM	Идентификация Square D	109
552557	551556	BSCM	Серийный номер	109
563	562	BSCM	Состояние автоматического выключателя	110
564	563	BSCM	Состояние коммуникационного мотора-редуктора	110
571582	570581	BSCM	Счётчики модуля BSCM	111
602652	601651	BSCM	Счётчик событий модуля BSCM и события модуля BSCM	112
10001015	9991014	Расцепитель Micrologic	Напряжение и небаланс напряжений (измерения в реальном времени)	49
10161032	10151031	Расцепитель Micrologic	Ток и небаланс токов (измерения в реальном времени)	50
10341045	10331044	Расцепитель Micrologic	Мощность (активная мощность, реактивная мощность с гармониками, полная мощность) (измерения в реальном времени)	51
10461053	10451052	Расцепитель Micrologic	Коэффициент мощности и коэффициент мощности основной гармоники (измерения в реальном времени)	52
1054	1053	Расцепитель Micrologic	Частота (измерения в реальном времени)	52
10801091	10791090	Расцепитель Micrologic	Реактивная мощность основной гармоники и мощность гармонических искажений (измерения в реальном времени)	52
10921100	10911099	Расцепитель Micrologic	Общее гармоническое искажение (измерения в реальном времени)	53
1144	1143	Расцепитель Micrologic	Тепловая память электродвигателя (измерения в реальном времени)	53
1145	1144	Расцепитель Micrologic	Vmax: максимум V12, V23 и V31 (измерения в реальном времени)	49
1146	1145	Расцепитель Micrologic	Vmin: минимум V12, V23 и V31 (измерения в реальном времени)	49
13001315	12991314	Расцепитель Micrologic	Напряжение (минимальные значения измерений в реальном времени)	54
13161332	13151331	Расцепитель Micrologic	Ток (минимальные значения измерений в реальном времени)	54
13341345	13331344	Расцепитель Micrologic	Мощность (активная мощность, реактивная мощность с гармониками, полная мощность) (минимальные значения измерений в реальном времени)	54
13461353	13451352	Расцепитель Micrologic	Коэффициент мощности (минимальные значения измерений в реальном времени)	54
1354	1353	Расцепитель Micrologic	Частота (минимальные значения измерений в реальном времени)	54
13801391	13791390	Расцепитель Micrologic	Реактивная мощность основной гармоники и мощность гармонических искажений (минимальные значения измерений в реальном времени)	54

Регистр	Адрес	Модуль	Переменная	Стр.
13921411	13911410	Расцепитель Micrologic	Общее гармоническое искажение (минимальные значения измерений в реальном времени)	54
1444	1443	Расцепитель Micrologic	Тепловая память электродвигателя (минимальные значения измерений в реальном времени)	54
16001615	15991614	Расцепитель Micrologic	Напряжение (максимальные значения измерений в реальном времени)	54
16161632	16151631	Расцепитель Micrologic	Ток (максимальные значения измерений в реальном времени)	54
16341645	16331644	Расцепитель Micrologic	Мощность (активная мощность, реактивная мощность с гармониками, полная мощность) (максимальные значения измерений в реальном времени)	54
16461653	16451652	Расцепитель Micrologic	Коэффициент мощности (максимальные значения измерений в реальном времени)	54
1654	1653	Расцепитель Micrologic	Частота (максимальные значения измерений в реальном времени)	54
16801691	16791690	Расцепитель Micrologic	Реактивная мощность основной гармоники и мощность гармонических искажений (максимальные значения измерений в реальном времени)	54
16921711	16911710	Расцепитель Micrologic	Общее гармоническое искажение (максимальные значения измерений в реальном времени)	54
1744	1743	Расцепитель Micrologic	Тепловая память электродвигателя (максимальные значения измерений в реальном времени)	54
20002031	19992030	Расцепитель Micrologic	Энергия	55
22002237	21992236	Расцепитель Micrologic	Потребление	56
22422243	22412242	Расцепитель Micrologic	Квадранты	80
29002929	28992928	Расцепитель Micrologic	Время сброса минимальных/максимальных значений	58
30003002	29993001	Расцепитель Micrologic	Текущая дата	91
3314	3313	Расцепитель Micrologic	Тип системы	80
3316	3315	Расцепитель Micrologic	Знак мощности	80
3318	3317	Расцепитель Micrologic	Знак коэффициента мощности	81
3324	3323	Расцепитель Micrologic	Метод суммирования энергии	81
33523355	33513354	Расцепитель Micrologic	Интервал потребления	81
5704	5703	Расцепитель Micrologic	Регистр состояния аварийно-предупредительного сигнала	61
57325781	57315780	Расцепитель Micrologic	Хронологический протокол аварийно-предупредительных сигналов	63
66506679	66496678	Расцепитель Micrologic	Предварительные аварийно-предупредительные сигналы	69
67706889	67696888	Расцепитель Micrologic	Аварийно-предупредительные сигналы, задаваемые пользователем	71
80008149	79998148	Расцепитель Micrologic	Командный интерфейс	33
87008705	86998704	Расцепитель Micrologic	Серийный номер	59
8709	8708	Расцепитель Micrologic	Версия аппаратного оборудования	59

Регистр	Адрес	Модуль	Переменная	Стр.
8716	8715	Расцепитель Micrologic	Идентификация Square D	59
8740	8739	Расцепитель Micrologic	Тип защиты	59
8741	8740	Расцепитель Micrologic	Тип измерения (А, Е)	59
8747	8746	Расцепитель Micrologic	Применение (распределительная сеть, электродвигатель)	59
8748	8747	Расцепитель Micrologic	Стандарт (MЭK, UL)	60
8750	8749	Расцепитель Micrologic	Номинальный ток	60
8751	8750	Расцепитель Micrologic	Полюс	60
8752	8751	Расцепитель Micrologic	16 Гц 2/3	60
87548763	87538762	Расцепитель Micrologic	Защита от перегрузок	75
87648773	87638772	Расцепитель Micrologic	Селективная токовая отсечка	75
87748783	87738782	Расцепитель Micrologic	Мгновенная токовая отсечка	76
87848793	87838792	Расцепитель Micrologic	Защита от замыканий на землю	76
87948803	87938802	Расцепитель Micrologic	Дифференциальная защита (блок Vigi)	77
8851	8850	Расцепитель Micrologic	Температура	91
8857	8856	Расцепитель Micrologic	Состояние модуля SDx	61
8865	8864	Расцепитель Micrologic	Время, оставшееся до срабатывания защиты от перегрузок	91
8872	8871	Расцепитель Micrologic	Чередование фаз	91
89008903	88998902	Расцепитель Micrologic	Защита от блокировки ротора	77
89048907	89038906	Расцепитель Micrologic	Защита от неполнофазных режимов	77
89088911	89078910	Расцепитель Micrologic	Защита от недогрузки	78
89128915	89118914	Расцепитель Micrologic	Защита от затянутого пуска	78
89168919	89158918	Расцепитель Micrologic	Защита нейтрали	78
8930	8929	Расцепитель Micrologic	Параметр запрета тепловой памяти	78
91009218	90999217	Расцепитель Micrologic	Хронологический протокол аварийных отключений	65
9616	9615	Расцепитель Micrologic	Номинальное напряжение Vn	81
98019810	98009809	Расцепитель Micrologic	Конфигурирование выходов модуля SDx	79
10000	9999	Расцепитель Micrologic	Регистр состояния аварийного отключения	62
1177611782	1177511781	Интерфейс Modbus	Версия микропрограммного обеспечения	123
1178411789	1178311788	Интерфейс Modbus	Серийный номер	123
1180111823	1180011822	Интерфейс Modbus	Наименование блока IMU	124

Регистр	Адрес	Модуль	Переменная	Стр.
1184611868	1184511867	Интерфейс Modbus	Местоположение блока IMU	124
11891	11890	Интерфейс Modbus	Положение переключателя блокировки	124
11901	11900	Интерфейс Modbus	Идентификация Square D	123
1190311906	1190211905	Интерфейс Modbus	Версия аппаратного оборудования	123
1200012163	1199912162	Интерфейс Modbus	Профиль связи	133
12399	12398	Интерфейс Modbus	Состояние автоматического определения скорости	124
12400	12399	Интерфейс Modbus	Modbus-адрес	124
12401	12400	Интерфейс Modbus	Контроль чётности Modbus	124
12402	12401	Интерфейс Modbus	Скорость передачи данных Modbus	124
12403	12402	Интерфейс Modbus	Число стоповых бит	125
29390	29389	Расцепитель Micrologic	Состояние отказа	92
2950029549	2949929548	Расцепитель Micrologic	Хронологический протокол операций техобслуживания	67
2960029699	2959929698	Расцепитель Micrologic	Предыдущие настройки защиты	82
2978029819	2977929818	Расцепитель Micrologic	Минимальные/максимальные значения измерений с указанием даты и времени	86
2982029827	2981929826	Расцепитель Micrologic	Минимальная/максимальная частота сети с указанием даты и времени	87
2985129852	2985029851	Расцепитель Micrologic	Счётчик отработанных часов	88
29853	29852	Расцепитель Micrologic	Счётчик степени износа	88
2985529856	2985429855	Расцепитель Micrologic	Счётчик записей в памяти EEPROM (ЭСППЗУ)	88
2988029887	2987929886	Расцепитель Micrologic	Счётчики профилей нагрузки	88
2989029901	2988929900	Расцепитель Micrologic	Счётчики температурных профилей	89
2991029918	2990929907	Расцепитель Micrologic	Счётчики срабатываний защиты	89
2994029952	2993929951	Расцепитель Micrologic	Счётчик аварийно-предупредительных сигналов	90
2998029986	2997929985	Расцепитель Micrologic	Счётчики операций техобслуживания	90
2999029991	2998929990	Расцепитель Micrologic	Положения переключателей	92
29992	29991	Расцепитель Micrologic	Состояние переключателя блокировки	92
29993	29992	Расцепитель Micrologic	Вспомогательный источник питания 24 В	92
2999429998	2999329997	Расцепитель Micrologic	Версия микропрограммного обеспечения	60
3000030003	2999930002	Расцепитель Micrologic	Каталожный номер	60
30005	30004	Расцепитель Micrologic	Светодиодные индикаторы расцепителя Micrologic	92

Schneider Electric в странах СНГ

Беларусь

Минск

220006, ул. Белорусская, 15, офис 9 Тел.: (37517) 226 06 74, 227 60 34, 227 60 72

Казахстан

Алматы

050050, ул. Табачнозаводская, 20

Швейцарский центр

Тел.: (727) 244 15 05 (многоканальный) Факс: (727) 244 15 06, 244 15 07

Астана

010000, ул. Бейбитшилик, 18 Бизнес-центр «Бейбитшилик 2002», офис 402

Тел.: (3172) 91 06 69 Факс: (3172) 91 06 70

Атырау

060002, ул. Абая, 2-А Бизнес-центр «Сутас-С», офис 407 Тел.: (3122) 32 31 91, 32 66 70 Факс: (3122) 32 37 54

Россия

Волгоград

400089, ул. Профсоюзная, 15, офис 12 Тел.: (8442) 93 08 41

Воронеж

394026, пр-т Труда, 65, офис 267

Тел.: (4732) 39 06 00 Тел./факс: (4732) 39 06 01

Екатеринбург

620219, ул. Первомайская, 104 Офисы 311, 313

Тел.: (343) 217 63 37 Факс: (343) 217 63 38

664047, ул. 1-я Советская, 3 Б, офис 312 Тел./факс: (3952) 29 00 07, 29 20 43

420107, ул. Спартаковская, 6, этаж 7 Тел./факс: (843) 526 55 84 / 85 / 86 / 87 / 88

Калининград

236040, Гвардейский пр., 15 Тел.: (4012) 53 59 53 Факс: (4012) 57 60 79

Краснодар

350020, ул. Коммунаров, 268 В

Офисы 316, 314

Тел.: (861) 210 06 38, 210 14 45 Факс: (861) 210 06 02

Красноярск

660021, ул. Горького, 3 А, офис 302

Тел.: (3912) 56 80 95 Факс: (3912) 56 80 96

129281, ул. Енисейская, 37 Тел.: (495) 797 40 00 Факс: (495) 797 40 02

Мурманск

Центр поддержки клиентов

ru.csc@ru.schneider-electric.com

www.schneider-electric.ru

Тел.: 8 (800) 200 64 46 (многоканальный)

Тел.: (495) 797 32 32, факс: (495) 797 40 04

183038, ул. Воровского, д. 5/23 Конгресс-отель «Меридиан», офис 739 Тел.: (8152) 28 86 90

Факс: (8152) 28 87 30

Нижний Новгород

603000, пер. Холодный, 10 А, этаж 8 Тел./факс: (831) 278 97 25, 278 97 26

Новосибирск

630005, Красный пр-т, 86, офис 501 Тел.: (383) 358 54 21 Тел./факс: (383) 227 62 53

Пермь

614010, Комсомольский пр-т, 98, офис 11 Тел./факс: (342) 290 26 11 / 13 / 15

Ростов-на-Дону

344002, ул. Социалистическая, 74, литера А Тел.: (863) 200 17 22, 200 17 23 Факс: (863) 200 17 24

443096, ул. Коммунистическая, 27 Тел./факс: (846) 266 41 41, 266 41 11

Санкт-Петербург

198103, ул. Циолковского, 9, кор. 2 А

Тел.: (812) 320 64 64 Факс: (812) 320 64 63

Сочи

354008, ул. Виноградная, 20 А, офис 54 Тел.: (8622) 96 06 01, 96 06 02

Факс: (8622) 96 06 02

Уфа

450098, пр-т Октября, 132/3 (бизнес-центр КПД)

Блок-секция № 3, этаж 9 Тел.: (347) 279 98 29 Факс: (347) 279 98 30

Хабаровск

680000, ул. Муравьева-Амурского, 23, этаж 4

Тел.: (4212) 30 64 70 Факс: (4212) 30 46 66

Украина

Днепропетровск

49000, ул. Глинки, 17, этаж 4 Тел.: (380567) 90 08 88 Факс: (380567) 90 09 99

Донецк

83087, ул. Инженерная, 1 В Тел.: (38062) 385 48 45, 385 48 65 Факс: (38062) 385 49 23

Киев

03057, ул. Смоленская, 31-33, кор. 29 Тел.: (38044) 538 14 70

Факс: (38044) 538 14 71

Львов

79015, ул. Тургенева, 72, кор. 1 Тел./факс: (38032) 298 85 85

Николаев

54030, ул. Никольская, 25

Бизнес-центр «Александровский», офис 5 Тел./факс: (380512) 58 24 67, 58 24 68

Одесса

65079, ул. Куликово поле, 1, офис 213 Тел./факс: (38048) 728 65 55, 728 65 35

Симферополь

95013, ул. Севастопольская, 43/2, офис 11

Тел.: (380652) 44 38 26 Факс: (380652) 54 81 14

61070, ул. Академика Проскуры, 1 Бизнес-центр «Telesens», офис 569

Тел.: (38057) 719 07 79 Факс: (38057) 719 07 49